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Abstract

A new formulation of non-local branching superprocesses is given from which

we derive as special cases the rebirth, the multitype, the mass-structured, the mul-

tilevel and the age-reproduction-structured superprocesses and the superprocess-

controlled immigration process. This uni�ed treatment simpli�es considerably the

proof of existence of the old classes of superprocesses and also gives rise to some

new ones.
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1 Introduction

Measure-valued branching processes or superprocesses constitute a rich class of in�nite dimen-

sional processes currently under rapid development. Such processes arose in applications as high

density limits of branching particle systems; see e.g. Dawson (1992, 1993), Dynkin (1993, 1994),

Watanabe (1968). The development of this subject has been stimulated from di�erent subjects
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including branching processes, interacting particle systems, stochastic partial di�erential equa-

tions and non-linear partial di�erential equations. The study of superprocesses has also led to a

better understanding of some results in those subjects. In the literature, several di�erent types

of superprocess have been introduced and studied. In particular, Dawson and Hochberg (1991),

Dawson et al (1990) and Wu (1994) studied multilevel branching superprocesses, Gorostiza and

Lopez-Mimbela (1990), Gorostiza and Roelly (1991), Gorostiza et al (1992) and Li (1992b)

studied multitype superprocesses, Dynkin (1993, 1994) and Li (1992a, 1993) studied non-local

branching superprocesses, Gorostiza (1994) studied mass-structured superprocesses, Hong and

Li (1999) and Li (2001) studied superprocess-controlled immigration processes, and Bose and

Kaj (2000) studied age-reproduction-structured superprocesses. Those models arise in di�erent

circumstances of application and are of their own theoretical interests.

In this paper, we provide a uni�ed treatment of the above models. We �rst give a new

formulation of the non-local branching superprocess as the high density limit of some speci�c

branching particle systems. Then we derive from this superprocess the multitype, the mass-

structured, the multilevel and the age-reproduction-structured superprocesses and superprocess-

controlled immigration processes. Another related model, the so-called rebirth superprocesses, is

also introduced to explain the non-local branching mechanism. This uni�ed treatment simpli�es

considerably the proof of existence of the old classes of superprocesses and also gives rise to some

new ones. We think that this treatment may give some useful perspectives for those models.

The uni�cation is done by considering an enriched underlying state space E�I instead of E. In

this way, the mutation in types of the o�spring can be modeled by jumps in the I-coordinates

so that the multitype superprocess can be derived. The superprocess-controlled immigration

process is actually a special form of the multitype superprocess. To get the mass-structured

superprocess we let I = (0;1), which represents the mass or size of the in�nitesimal particles.

For the age-reproduction-structured superprocess, we take I = [0;1)�IN , where IN is the set of

non-negative integers, to keep the information on ages and numbers of o�spring of the particles.

In this model we have of course that any particle has non-decreasing [0;1) � IN -coordinates

starting from (0; 0) at its birth time. To get a two level superprocess, we simply assume that

I = M(S)Æ is the space of nontrivial �nite measures on another space S, and the M(S)Æ-

coordinate of the underlying process is a superprocess itself. For two-level branching systems,

what has been done so far for the second level branching is local, that is, when a superparticle

branches, supero�spring are produced as exact copies of their parent. Since the superparticles

have an internal dynamics and evolve as branching systems themselves, it is desirable to have the

possibility that the supero�spring have internal structures di�erent from those of their parents,

which requires a non-local branching mechanism. Models of this type have potential applications

in genetics, population dynamics and other complex multilevel systems; see e.g. Dawson (2000)

and Jagers (1995).

Notation and basic setting: Suppose that E is a Lusin topological space, i.e., a homeomorph

of a Borel subset of some compact metric space, with Borel �-algebra B(E). Let M(E) denote

the space of �nite Borel measures on E topologized by the weak convergence topology, so it is

also a Lusin topological space. Let N(E) be the subspace of M(E) consisting of integer-valued

measures on E and let M(E)Æ =M(E) n f0g, where 0 denotes the null measure on E. The unit

mass concentrated at a point x 2 E is denoted by Æx. Let

B(E) = f bounded B(E)-measurable functions on E g;

C(E) = f f : f 2 B(E) is continuous g;
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Ba(E) = f f : f 2 B(E) and kfk � a g;

where a � 0 and \k � k"denotes the supremum norm. The subsets of positive members of the

function spaces are denoted by the superscript \+"; e.g., B+(E), C+(E). For f 2 B(E) and

� 2M(E), we write �(f) for
R
E
fd�.

2 Non-local branching particle systems

Non-local branching particle systems have been considered by many authors. We here adapt the

model of Dynkin (1993). Let � = (
 ; �t;F ;Ft; x) be a right continuous strong Markov process

with state space E and transition semigroup (Pt)t�0. Let  2 B+(E) and let F (x;d�) be a

Markov kernel from E to N(E) such that

sup
x2E

Z
N(E)

�(1)F (x;d�) <1: (2.1)

A branching particle system with parameters (�; ; F ) is described by the following properties:

(2.A) The particles in E move randomly according to the law given by the transition prob-

abilities of �.

(2.B) For a particle which is alive at time r and follows the path (�t)t�r, the conditional

probability of survival during the time interval [r; t] is �(r; t) := expf�
R
t

r
(�s)dsg.

(2.C) When a particle dies at a point x 2 E, it gives birth to a random number of o�spring

in E according to the probability kernel F (x;d�). The o�spring then start to move from their

locations. (Thus the name \non-local branching" is used.)

In the model, it is assumed that the migrations, the lifetimes and the branchings of the

particles are independent of each other. Let Xt(B) denote the number of particles in B 2 B(E)

that are alive at time t � 0 and assume X0(E) < 1. Then fXt : t � 0g is a Markov process

with state space N(E). For � 2 N(E), let � denote the conditional law of fXt : t � 0g given

X0 = �. For f 2 B+(E), put

ut(x) � ut(x; f) = � log Æx expf�Xt(f)g: (2.2)

The independence hypotheses imply that

� expf�Xt(f)g = expf��(ut)g: (2.3)

Moreover, we have the following fundamental equation

e�ut(x) = xf�(0; t)e
�f(�t)g+ x

�Z
t

0

�
�(0; s)(�s)

Z
N(E)

e��(ut�s)F (�s;d�)

�
ds

�
: (2.4)

This equation is obtained by thinking that if a particle starts moving from point x at time 0, it

follows a path of � and does not branch before time t, or it �rst splits at time s 2 (0; t]. By a

standard argument one sees that equation (2.4) is equivalent to

e�ut(x) = xe
�f(�t) � x

�Z
t

0
(�s)e

�ut�s(�s)ds

�
(2.5)

+ x

�Z
t

0

�
(�s)

Z
N(E)

e��(ut�s)F (�s;d�)

�
ds

�
;
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see e.g. Dawson (1992, 1993) and Dynkin (1993, 1994). It is sometimes more convenient to

denote

vt(x) � vt(x; f) = 1� expf�ut(x)g; (2.6)

and rewrite (2.5) into the form

vt(x) = x

n
1� e�f(�t)

o
� x

�Z
t

0
(�s)vt�s(�s)ds

�
(2.7)

+ x

�Z
t

0

�
(�s)

Z
N(E)

(1� e��(ut�s))F (�s;d�)

�
ds

�
:

3 Non-local branching superprocesses

In this section, we prove a limit theorem for a sequence of non-local branching particle systems.

Although the particle systems considered here are very speci�c, they lead to the same class of

non-local branching superprocesses constructed in Dynkin (1993, 1994) and Li (1992a) with a

slightly di�erent formulation. We shall give some details of the derivation to clarify the meaning

of the parameters, which is needed in understanding the connections of non-local branching with

other related models.

Let fXt(k) : t � 0g, k = 1; 2; : : : be a sequence of branching particle systems with parameters

(�; k; Fk). Then for each k,

fX
(k)
t := k�1Xt(k) : t � 0g (3.1)

de�nes a Markov process in Mk(E) := fk�1� : � 2 N(E)g. For � 2 Mk(E), let
(k)
� denote the

conditional law of fX
(k)
t : t � 0g given X

(k)
0 = �. By (2.3) we have

(k)
� exp

n
�X

(k)
t (f)

o
= exp

n
��(ku

(k)
t )

o
; (3.2)

where u
(k)
t (x) is determined by

v
(k)
t (x) = k[1 � expf�u

(k)
t (x)g]: (3.3)

and

v
(k)
t (x) = x

n
k(1 � e�f(�t)=k)

o
� x

�Z
t

0
k(�s)v

(k)
t�s(�s)ds

�
(3.4)

+ x

�Z
t

0

�
kk(�s)

Z
N(E)

(1� e��(u
(k)

t�s
))Fk(�s;d�)

�
ds

�
:

For � 2 M(E), let �(k�) be a Poisson random measure on E with intensity k�, and let
(k)

(�)

denote the conditional law of fX
(k)
t : t � 0g given X

(k)
0 = k�1�(k�). From (3.2) we get

(k)

(�)
exp

n
�X

(k)
t (f)

o
= exp

n
��(v

(k)
t )

o
: (3.5)
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It is natural to treat separately the o�spring that start their motion from the death sites of

their parents. Suppose that gk 2 B
+(E � [0; 1]) and, for each x 2 E,

gk(x; z) =
1X
i=0

p
(k)
i
(x)zi; z 2 [0; 1];

is a probability generating function with supx2E(d=dz)gk(x; 1
�) <1. Let �k and �k 2 B

+(E)

and assume k(x) := �k(x) + �k(x) is strictly positive. We may replace Fk(x;d�) by

k(x)
�1

�
�k(x)

1X
i=0

p
(k)
i
(x)F

(i)
0 (x;d�) + �k(x)Fk(x;d�)

�
; (3.6)

where F
(i)
0 (x;d�) denotes the unit mass concentrated at iÆx. Intuitively, as a particle splits at

x 2 E, the branching is of local type with probability �k(x)=k(x) and is of non-local type with

probability �k(x)=k(x). If it chooses the local branching type, the distribution of the o�spring

number is fp
(k)
i
(x)g. The non-local branching at x 2 E is described by the kernel Fk(x;d�).

Now (3.4) turns into

v
(k)
t (x) = x

n
k(1 � e�f(�t)=k)

o
� x

�Z
t

0
k(�s)v

(k)
t�s(�s)ds

�

+ x

�Z
t

0
k�k(�s)[1� gk(�s; e

�u
(k)

t�s
(�s))]ds

�
(3.7)

+ x

�Z
t

0

�
k�k(�s)

Z
N(E)

[1� e��(u
(k)

t�s
)]Fk(�s;d�)

�
ds

�
;

or equivalently

v
(k)
t (x) +

Z
t

0
x[�k(�s; v

(k)
t�s(�s)) +  k(�s; v

(k)
t�s)]ds = xk[1� e�f(�t)=k]; (3.8)

where

�k(x; z) = k�k(x)[gk(x; 1 � z=k)� (1� z=k)] (3.9)

and

 k(x; f) = �k(x)[f(x)� �k(x; f)]; (3.10)

where

�k(x; f) =

Z
N(E)

k(1� expf�(log(1� f=k))g)Fk(x;d�): (3.11)

Let M0(E) denote the set of all Borel probability measures on E. Suppose that hk 2

B+(E �M0(E)� [0; 1]) and, for each (x; �) 2 E �M0(E),

hk(x; �; z) =
1X
i=0

q
(k)
i

(x; �)zi; z 2 [0; 1];
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is a probability generating function with supx;�(d=dz)hk(x; �; 1
�) <1. Suppose that G(x;d�)

is a probability kernel from E to M0(E). We may consider a special form of the second term in

(3.6) by letting

Fk(x;d�) =

Z
M0(E)

� 1X
i=0

q
(k)
i
(x; �)(l�)�i(d�)

�
G(x;d�); (3.12)

where l�(d�) denotes the image of � under the map y 7! Æy from E to M(E) and (l�)�i denotes

the i-fold convolution of l�. Now we have

�k(x; f) =

Z
M0(E)

k[1� hk(x; �; 1 � �(f)=k)]G(x;d�): (3.13)

Intuitively, if a parent particle at x 2 E chooses non-local branching, it �rst selects an o�spring-

location-distribution �(x; �) 2 M0(E) according to the probability kernel G(x;d�), then gives

birth to a random number of o�spring according to the distribution fq
(k)
i
(x; �(x; �))g, and those

o�spring choose their locations in E independently of each other according to �(x; �). A similar

non-local branching mechanism was considered in Li (1992a, 1993).

In view of (3.5) and (3.8), it is natural to assume the sequences f�kg, f�kg and f�kg to

converge if one hopes to obtain convergence of fX
(k)
t : t � 0g to some process fXt : t � 0g as

k !1.

Lemma 3.1 (i) Suppose that

1X
i=0

iq
(k)
i
(x; �) � 1 (3.14)

and that �k(x; f)! �(x; f) uniformly on E �B+
a (E) for each a � 0, then �(x; f) has represen-

tation

�(x; f) = �(x; f) +

Z
M(E)Æ

(1� e��(f))� (x;d�); (3.15)

where �(x;dy) is a bounded kernel on E, and �(1)� (x;d�) is a bounded kernel from E toM(E)Æ

with

�(x; 1) +

Z
M(E)Æ

�(1)� (x;d�) � 1: (3.16)

(ii) A functional �(x; f) can be given by (3.15) and (3.16) if and only if it has representation

�(x; f) =

Z
M0(E)

�
d(x; �)�(f) +

Z
1

0
(1� e�u�(f))n(x; �;du)

�
G(x;d�); (3.17)

where d 2 B+(E �M0(E)), un(x; �;du) is a bounded kernel from E �M0(E) to (0;1) and

G(x;d�) is a probability kernel from E to M0(E) with

d(x; �) +

Z
1

0
un(x; �;du) � 1: (3.18)

(iii) To each function �(�; �) given by (3.17) and (3.18) there corresponds a sequence of the

form (3.13) satisfying the requirement of (i).
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Proof. (i) Note that k(1� e�f=k) converges to f uniformly in B+
a (E). Then

�k(x; k(1 � e�f=k)) =

Z
N(E)

k(1 � expf�(f)=kg)Fk(x;d�)

converges to �(x; f) uniformly on E � B+
a (E). It is known that a metric r can be introduced

into E so that (E; r) becomes a compact metric space while the Borel �-algebra induced by

r coincides with B(E); see e.g. Parthasarathy (1967, p.14). Now M(E) endowed with weak

convergence topology is a locally compact metrizable space. Let �M(E) = M(E) [ f@g be the

one-point-compacti�cation of M(E). By (3.14), fk�(1)Fk(x;d(k
�1�)) : x 2 E; k � 1g viewed

as a family of �nite measures on �M(E) is tight. Fix x 2 E and take fnig � fng such that

ki�(1)Fki(x;d(k
�1
i
�)) converges to some �nite measure G(x;d�) on �M(E) as i!1. It follows

that

�(x; f) =

Z
M(E)Æ

(1� e��(f))�(1)�1G(x;d�);

�rst for f 2 C+(E; r) and then for all f 2 B+(E). Now (3.15) follows by a simple change of the

measure and (3.16) follows from (3.14). (ii) is immediate. To get (iii) we may set

hk(x; �; z) = 1 + d(x; �)(z � 1) + k�1
Z
1

0
(eku(z�1) � 1)n(x; �;du):

Observe that

di

dzi
hk(x; �; 0) � 0; i = 1; 2; : : : ;

and (3.14) assures that hk(x; �; 0) � 0. Thus for �xed (x; a) 2 E � M0(E), hk(x; �; �) is a

probability generating function. Then we de�ne �k(x; f) by (3.13) so that �k(x; f) = �(x; f) for

(x; f) 2 E �B+
1=k

(E). 2

Lemma 3.2 (Li, 1992c) (i) Suppose that, for each l � 0, the sequence �k(x; z) is uniformly

Lipschitz in z on the set E � [0; l] and that �k(x; z) converges to some �(x; z) uniformly as

k !1, then �(x; z) has the representation

�(x; z) = b(x)z + c(x)z2 +

Z
1

0
(e�zu � 1 + zu)m(x;du); x 2 E; z � 0; (3.19)

where b 2 B(E), c 2 B+(E) and (u ^ u2)m(x;du) is a bounded kernel from E to (0;1).

(ii) To each function �(�; �) given by (3.19) there corresponds a sequence of the form (3.9)

satisfying the requirement of (i).

Based on Lemmas 3.1 and 3.2, the following result can be proved similarly as in Dawson

(1992, 1993), Dynkin (1993, 1994) and Li (1992a, c).

Lemma 3.3 If the conditions of Lemma 3.1 (i) and Lemma 3.2 (i) are ful�lled and if �k !

� 2 B+(E) uniformly as k ! 1, then for each a � 0 both v
(k)
t (x; f) and ku

(k)
t (x; f) converge
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boundedly and uniformly on the set [0; a]�E�B+
a (E) of (t; x; f) to the unique bounded positive

solution Vtf(x) to the evolution equation

Vtf(x) +

Z
t

0

�Z
E

[�(y; Vt�sf(y)) +  (y; Vt�sf)]Ps(x;dy)

�
ds = Ptf(x); t � 0; (3.20)

where

 (x; f) = �(x)[f(x) � �(x; f)]; x 2 E; f 2 B+(E): (3.21)

By Lemma 3.3 and Dawson (1993, p.42),

Z
M(E)

e��(f)Qt(�;d�) = expf��(Vtf)g; f 2 B+(E); (3.22)

de�nes a transition semigroup (Qt)t�0 onM(E). A Markov process fXt : t � 0g with state space

M(E) is called a non-local branching superprocess with parameters (�; �;  ) if it has transition

semigroup (Qt)t�0. Condition (3.14) means that the corresponding branching particle system has

subcritical non-local branching. In terms of the limiting superprocess, this condition is expressed

as (3.16), which is of course a restriction of the class of �(�; �) given by (3.15). However, since

�(x; z) + �(x)z belongs to the class de�ned by (3.19), and since � 2 B+(E) is arbitrary, (3.16)

does not put any restriction on the generality of

�(x; f(x)) +  (x; f) = �(x; f(x)) + �(x)f(x)� �(x)�(x; f):

Therefore, the class of non-local branching superprocesses given by (3.20) and (3.22) coincides

with those constructed Dynkin (1993, 1994) and Li (1992a), where the �rst term of  (x; �) was

written into �(x; �). In principle, (3.20) and (3.22) give the most general non-local branch-

ing superprocesses constructed in the literature up to now. A more general class of non-local

branching superprocesses were discussed in Dynkin et al (1994), but their existence has not been

established. The next theorem follows similarly as in Li (1992a, c).

Theorem 3.1 Let fX
(k)
t : t � 0g be the sequence of renormalized branching particle systems

determined by (3.5) and (3.8), and let fXt : t � 0g be the non-local branching superprocess with

transition semigroup (Qt)t�0 given by (3.20) and (3.22). Assume that the conditions of Lemma

3.1 (i) and Lemma 3.2 are ful�lled. Then for every � 2 M(E), 0 � t1 < : : : < tn and a � 0, as
k !1,

(k)

(�)
exp

�
�

nX
i=1

X
(k)
ti

(fi)

�
! � exp

�
�

nX
i=1

Xti
(fi)

�

uniformly on f1; : : : ; fn 2 B
+
a (E).

Naturally, we may regard fX
(k)
t : t � 0g as a process in the space M(E). Then the above

theorem shows that the �nite dimensional distributions of fX
(k)
t : t � 0g under

(k)

(�)
converge as

k ! 1 to those of fXt : t � 0g under �. Therefore, the non-local branching superprocess is a

small particle approximation for the non-local branching particle system. Heuristically, � gives

the law of the migration of the \particles", �(x; �) describes the amount of o�spring born at
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x 2 E by a parent that dies at this point, and  (x; �) describes the amount of the o�spring born

by this parent that are displaced randomly into the space according to distributions � randomly

chosen by G(x; d�). Thus the locations of non-locally displaced o�spring involve two sources of

randomness.

Replacing f in (3.21) and (3.22) by �f and di�erentiating at � = 0 we see that the �rst

moments of the superprocess are given by

Z
M(E)

�(f)Qt(�;d�) = �(Ttf); t � 0; f 2 B+(E); (3.23)

where (Tt)t�0 is a locally bounded semigroup of kernels on E determined by

Ttf(x) +

Z
t

0

�Z
E

b(y)Tt�sf(y) + �(y)[Tt�sf(y)�m(y; Tt�sf)]Ps(x;dy)

�
ds = Ptf(x); (3.24)

and m(x;dy) is the bounded kernel on E de�ned by

m(x; f) = �(x; f) +

Z
M(E)Æ

�(f)� (x;d�): (3.25)

In particular, we may de�ne another locally bounded semigroup of kernels (Ut)t�0 on E by

Utf(x) +

Z
t

0

�Z
E

�(y)[Ut�sf(y)�m(y; Ut�sf)]Ps(x;dy)

�
ds = Ptf(x); (3.26)

which has weak generator G such that

Gf(x) = Af(x) + �(x)[m(x; f) � f(x)]; f 2 D(A); (3.27)

where A denotes the weak generator of (Pt)t�0. Now the generator B of (Tt)t�0 can be expressed

as

Bf(x) = Gf(x)� b(x)f(x); f 2 D(A): (3.28)

By a comparison theorem we have Ttf � ekbktUtf for all t � 0 and f 2 B(E)+. From this and

(3.23) we have

Z
M(E)

�(f)Qt(�;d�) � ekbkt�(Utf); t � 0; f 2 B+(E): (3.29)

Note that (3.29) implies that � 7! �(1) is a kbk-excessive function for (Qt)t�0.

To conclude this section, let us consider briey the special, and possibly more desirable, case

where G(x;d�) � unit mass at some �(x; �) 2M0(E), that is, the non-locally displaced o�spring

born at x 2 E choose their locations independently according to the (non-random) distribution

�(x; �). In this case, the non-local branching mechanism is given by

 (x; f) = �(x)[f(x) � �(x; �(x; f))]; x 2 E; f 2 B+(E); (3.30)

where

�(x; z) = d(x)z +

Z
1

0
(1� e�zu)n(x;du); x 2 E; z � 0; (3.31)

9



where d 2 B+(E) and un(x;du) is a bounded kernel from E to (0;1) with

m(x) := d(x) +

Z
1

0
un(x;du) � 1; x 2 E: (3.32)

In particular, if �(x; z) � z, we may rewrite (3.20) formally as

d

dt
Vtf(x) = AVtf(x)� �(x; Vtf(x)) + �(x)[�(x; Vtf)� Vtf(x)]; t � 0; x 2 E;

with initial condition V0f = f . This equation corresponds to a superprocess with underlying

generator A and non-trivial local and non-local branching mechanisms. Alternatively, we may

also think that the superprocess has underlying generator Af(x)+�(x)[�(x; f)�f(x)] and only

non-trivial local branching mechanism. Since the generator B of a general Markov process in E is

the limit of a sequence of operators of the type �(x)[�(x; f)� f(x)], in principle a superprocess

with more general underlying generator A + B and only local branching mechanism can be

approximated by a sequence of superprocesses with underlying generator A and non-trivial local

and non-local branching mechanisms. Under suitable conditions it is also possible to establish

convergence of branching particle systems with underlying generator A and non-trivial local

and non-local branching mechanisms to the superprocess with underlying generator A+B and

with only non-trivial local branching mechanism, which has been done in a particular setting in

Gorostiza (1994); see also section 6.

4 Rebirth superprocesses

We may consider a modi�cation of the branching particle system described in the last two sec-

tions. Let (�; ; F ) be given as in section 2. A rebirth branching particle system with parameters

(�; ; F ) is described by (2.A), (2.B) and the following

(4.C) When a particle dies at a point x 2 E, it gives birth to a random number of o�spring in

E according to the probability kernel F (x;d�). In addition, the parent particle itself is replaced

by an extra o�spring at site x 2 E, that is, the parent particle is reborn. All the o�spring then

start to move from their locations.

Let fXt : t � 0g be the process de�ned in the same way as in section 2. Then fXt : t � 0g

is still a Markov process with state space N(E). We also have (2.2) and (2.3), but (2.4) is now

replaced by

e�ut(x) = xf�(0; t)e
�f(�t)g (4.1)

+ x

�Z
t

0

�
�(0; s)(�s)

Z
N(E)

e�ut�s(�s)e��(ut�s)F (�s;d�)

�
ds

�
:

This is equivalent to

e�ut(x) = xe
�f(�t) � x

�Z
t

0
(�s)e

�ut�s(�s)ds

�

+ x

�Z
t

0

�
(�s)

Z
N(E)

e�ut�s(�s)e��(ut�s)F (�s;d�)

�
ds

�
;
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or

1� e�ut(x) = x

n
1� e�f(�t)

o
� x

�Z
t

0
(�s)(1 � e�ut�s(�s))ds

�

+ x

�Z
t

0

�
(�s)

Z
N(E)

(1� e�ut�s(�s))e��(ut�s)F (�s;d�)

�
ds

�

+ x

�Z
t

0

�
(�s)

Z
N(E)

(1� e��(ut�s))F (�s;d�)

�
ds

�
:

Let vt(x) � vt(x; f) be de�ned by (2.6). Then we have

vt(x) = x

n
1� e�f(�t)

o
� x

�Z
t

0
(�s)vt�s(�s)ds

�

+ x

�Z
t

0

�
(�s)

Z
N(E)

vt�s(�s)e
��(ut�s)F (�s;d�)

�
ds

�
(4.2)

+ x

�Z
t

0

�
(�s)

Z
N(E)

(1� e��(ut�s))F (�s;d�)

�
ds

�
:

We now consider a sequence of rebirth branching particle systems fXt(k) : t � 0g with

parameters (�; k; Fk). De�ne fX
(k)
t : t � 0g and choose Fk as in section 3 with �k(x) � 0 and

k(x) � �k(x). Then (3.5) remains valid if we replace (3.7) by

v
(k)
t (x) = x

n
k(1� e�f(�t)=k)

o
� x

�Z
t

0
�k(�s)v

(k)
t�s(�s)ds

�

+ x

�Z
t

0

�
�k(�s)

Z
N(E)

v
(k)
t�s(�s)e

��(u
(k)

t�s
)Fk(�s;d�)

�
ds

�
(4.3)

+ x

�Z
t

0

�
k�k(�s)

Z
N(E)

[1� e��(u
(k)

t�s
)]Fk(�s;d�)

�
ds

�
;

or equivalently

v
(k)
t (x) +

Z
t

0
x[�k(�s)�k(�s; v

(k)
t�s) +  k(�s; v

(k)
t�s)]ds = xk[1� e�f(�t)=k]; (4.4)

where  k is given by (3.10) and (3.13), and

�k(x; f) = �f(x)

Z
M0(E)

hk(x; �; 1 � �(f)=k)G(x;d�): (4.5)

Lemma 4.1 If the conditions of Lemma 3.1 (i) are ful�lled and if �k ! � 2 B+(E) uniformly

as k ! 1, then, for each a � 0, we have �k(x; f) ! f(x) uniformly on E � B+
a (E) and the

solution v
(k)
t (x; f) to (4.4) converges boundedly and uniformly on the set [0; a]�E �B+

a (E) of

(t; x; f) to the unique bounded positive solution Vtf(x) to the evolution equation

Vtf(x)�

Z
t

0

� Z
E

�(y)�(y; Vt�sf)Ps(x;dy)

�
ds = Ptf(x); (4.6)

where �(�; �) is de�ned by (3.15) and (3.21).
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Based on this lemma, one can show as in section 3 that the �nite dimensional distributions

of fX
(k)
t : t � 0g under

(k)

(�)
converge as k ! 1 to those of the process fXt : t � 0g with

semigroup (Qt)t�0 de�ned by (3.22) and (4.6). Since �k(x) � 0 in the approximating sequence,

we call fXt : t � 0g a rebirth superprocess. Note that (4.6) is the special form of (3.20) with

local branching mechanism �(x; z) � ��(x)z, which exactly compensates the death factor in

the non-local branching mechanism. This gives an interpretation of the non-local branching

mechanism.

5 Multitype superprocesses

In this section, we deduce the existence of a class of multitype superprocesses from that of

the non-local branching superprocess constructed in section 3 following the arguments in Li

(1992b). Let E and I be two Lusin topological spaces and let � = f
 ; (�t; �t);F ;Ft; (x;a)g be a

right continuous strong Markov process with state space E�I. Let �(�; �; �) and �(�; �; �) be given

by (3.19) and (3.31), respectively, with x 2 E replaced by (x; a) 2 E � I. Let �(�; �) 2 E � I

and let �(x; a;db) be a probability kernel from E� I to I. As a special form of the model given

in section 3, we have a non-local branching superprocess fXt(dx; da) : t � 0g in M(E � I) with

transition probabilities determined by

� expf�Xt(f)g = expf��(Vtf)g; t � 0; f 2 B+(E � I); (5.1)

where Vtf is the unique bounded positive solution to

Vtf(x; a) +

Z
t

0
(x;a)[�(�s; �s; Vt�sf(�s; �s)) + �(�s; �s)Vt�sf(�s; �s)]ds

�

Z
t

0
(x;a)[�(�s; �s)�(�s; �s; �(�s; �s; Vt�sf(�s; �)))]ds (5.2)

= (x;a)[f(�t; �t)]:

We may call fXt : t � 0g a multitype superprocess with type space I. Heuristically, f�t : t � 0g

gives the law of migration of the \particles", f�t : t � 0g represents the mutation of their

types, �(x; a; �) describes the amount of the a-type o�spring born when an a-type parent dies at

x 2 E, �(x; a; �) describes the amount of the o�spring born by this parent that change into new

types randomly according to the kernel �(x; a;db), and �(x; a) represents the birth rate of the

changing-type o�spring at x 2 E. It is assumed that all of the o�spring start migrating from

the death site of their parent. Note that the migration process f�t : t � 0g and the mutation

process f�t : t � 0g are not necessarily independent.

Now let us consider a special case which has been studied in the literature. Suppose that

I = f1; : : : ; kg and for each i 2 I, �(i) is a right continuous strong Markov process in E with

semigroup (P
(i)
t )t�0, �

(i) belongs to the class given by (3.19) and �(i) belongs to the class given

by (3.31). Let � be a right continuous strong Markov process in the product space E � I with

transition semigroup (Pt)t�0 de�ned by

Ptf(x; i) =

Z
E

f(y; i)P
(i)
t (x;dy); f 2 B+(E � I):

12



Let �((x; i); z) = �(i)(x; z). Suppose that �(i) 2 B+(E) and �(x; i; �) is a Markov kernel from

E � I to I having the decomposition

�(x; i; �) =
kX

j=1

p
(i)
j
(x)Æj(�);

where p
(i)
j
(x) � 0,

P
k

j=0 p
(i)
j
(x) � 1 and Æj denotes the unit mass at j 2 I. Then we have a

multitype superprocess fXt : t � 0g inM(E�I) by (5.1) and (5.2). For i 2 I and � 2M(E�I)

we de�ne �(i) 2 M(E) by �(i)(B) = �(B � fig). The map � 7! (�(1); : : : ; �(k)) is clearly a

homeomorphism between M(E � I) and the k-dimensional product space M(E)k. Therefore,

f(X
(1)
t ; : : : ; X

(k)
t ) : t � 0g is a Markov process in the space M(E)k, which may may be called a

k-type superprocess. Clearly, this class of k-type superprocesses coincides with the one de�ned in

Li (1992b). Heuristically, �(i) gives the law of the migration of the ith type \particles", �(i)(x; �)

describes the amount of the ith type o�spring born when an ith type parent dies at point x 2 E,

�(i)(x; �) describes the amount of the o�spring born by this parent that change into new types

randomly according to the discrete distribution fp
(i)
1 (x); : : : ; p

(i)
k
(x)g, and �(i)(x) represents the

birth rate of the changing-type o�spring at x 2 E. The study of multitype superprocesses was

initiated by Gorostiza and Lopez-Mimbela (1990); see also Gorostiza and Roelly (1991) and

Gorostiza et al (1992).

6 Superprocess-controlled immigration

By the discussions in the last section, we have a special 2-type superprocess f(X
(1)
t ;X

(2)
t ) : t � 0g

in M(E)2 with transition probabilities determined by

(�(1);�(2)) exp
n
�X

(1)
t (f (1))�X

(2)
t (f (2))

o
= exp

n
��(1)(v

(1)
t )� �(2)(v

(2)
t )

o
; (6.1)

where v
(1)
t (�) and v

(2)
t (�) are de�ned uniquely by

v
(1)
t (x) +

Z
t

0

� Z
E

�
�(1)(y; v

(1)
t�s(y))� v

(2)
t�s(y)

�
P (1)
s (x;dy)

�
ds = P

(1)
t f (1)(x); (6.2)

and

v
(2)
t (x) +

Z
t

0

� Z
E

�(2)(y; v
(2)
t�s(y))P

(1)
s (x;dy)

�
ds = P

(2)
t f (2)(x): (6.3)

In particular, if f (2) � 0, we have v
(2)
t � 0 and

(�(1);�(2)) exp
n
�X

(1)
t (f (1))

o
= exp

n
��(1)(v

(1)
t )

o
; (6.4)

where v
(1)
t (�) is given by

v
(1)
t (x) +

Z
t

0

� Z
E

�(1)(y; v
(1)
t�s(y))P

(1)
s (x;dy)

�
ds = P

(1)
t f (1)(x): (6.5)
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Thus fX
(1)
t : t � 0g is a superprocess in M(E) with parameters (�(1); �(1)). On the other hand,

by an expression of weighted occupation times, the value in (6.1) is equal to

(�(1);�(2)) exp
n
�X

(1)
t (f (1))

o
exp

�
��(2)(v

(2)
t )�

Z
t

0
X(1)
s (v

(2)
t�s)ds

�
;

see e.g. Dawson (1993) and Dynkin (1993, 1994). Then we see that

(�(1);�(2))

�
exp

n
�X

(2)
t (f (2))

o ����X(1)
s : s � 0

�
= exp

�
��(2)(v

(2)
t )�

Z
t

0
X(1)
s (v

(2)
t�s)ds

�
:

That is, given fX
(1)
t : t � 0g, the second coordinate fX

(2)
t : t � 0g is a superprocess with

parameters (�(2); �(2)) and with immigration controlled by fX
(1)
t : t � 0g. A special class of

superprocess-controlled immigration processes have been studied in Hong and Li (1999) and

their relation with multitype superprocesses has been pointed out in Li (2001).

7 Mass-structured superprocesses

A multitype superprocess fXt(dx;da) : t � 0g with type space I = (0;1) can be called a

mass-structured superprocess if we interpret x 2 E and a > 0 as the coordinates of position and

mass, respectively. For the mass-structured superprocess, we may consider its aggregated process

fYt : t � 0g de�ned by

Yt(dx) :=

Z
1

0
aXt(dx;da); x 2 E: (7.1)

Since the integrand on the right hand side is unbounded, fYt : t � 0g is only well-de�ned under

some restrictions. In general, fYt : t � 0g is not Markovian. Let A be the weak generator of

f(�t; �t) : t � 0g and (Tt)t�0 the locally bounded semigroup of �nite kernels on E � I with

generator

Bf(x; a) = Af(x; a) + �(x; a)[m(x; a)�(a; f(x; �)) � f(x; a)]� b(x; a)f(x; a); (7.2)

where b(x; a) is the coeÆcient of the linear term of �(x; a; z) and m(x; a) is de�ned by (3.32)

with x 2 E replaced by (x; a) 2 E � I. Indeed, (7.2) is of the same form as (3.28) with (x; a)

instead of x. By the discussions in section 3, the �rst moments of the superprocess are given by

�fXt(f)g = �(Ttf); f 2 B+(E � I): (7.3)

In practice, we may have that a newborn o�spring is no larger than its parent, which corre-

sponds to the assumption that �(a; �) is supported by (0; a). Let H(x; a) = a and suppose that

H 2 D(A) is a c1-excessive function of f(�t; �t) : t � 0g for some constant c1 > 0. In this case,

we have BH(x; a) � (c1+ kbk)H(x; a) and hence H 2 D(B) is a (c1+ kbk)-excessive function of

(Tt)t�0. It follows from (7.3) that

�fXt(H)g � e(c1+kbk)t�(H): (7.4)

Then we may change the state space slightly and take any �-�nite measure � on E � (0;1)

satisfying �(H) <1 as the initial state of fXt : t � 0g; see e.g. El Karoui and Roelly (1991) or
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Li (1992c). In this case, (7.4) implies that Xt(H) <1 a.s. for all t � 0 so that (7.1) de�nes an

aggregated process fYt : t � 0g with �nite measure values.

A special type of mass-structured superprocess with Markovian aggregated process has been

studied by Gorostiza (1994). Assume that �(�; �) � 0 and �t = g(t; �0) for a deterministic

mapping g(�; �) from [0;1) � (0;1) to (0;1). Let x denote the conditional law of f�t : t � 0g

given �0 = x. For f 2 B+(E), (5.2) becomes

Vtf(x; a) +

Z
t

0
x[�(�s; g(s; a); Vt�sf(�s; g(s; a)))]ds = xf(�t): (7.5)

Since the motion of �t = g(t; �0) is deterministic, if X0 is supported by E � fag, then Xt is

supported by E�fg(t; a)g and Yt = g(t; a)Xt. In this case, fYt : t � 0g is a Markov process since

the transformation Xt 7! Yt loses no information. For B 2 B(E), let Xa
t (B) = Xt(B�fg(t; a)g).

Then fXa
t : t � 0g is an inhomogeneous superprocess with cumulant semigroup (V a

r;t)t�r�0
de�ned by V a

r;tf(x) := Vt�rf(x; g(r; a)), which has underlying process f�t : t � 0g and time-

dependent branching mechanism �(x; g(t; a); �). This gives a representation of the aggregated

process in terms of an inhomogeneous superprocess. A representation of this type was �rst

given by Gorostiza (1994) in the case where �t = �0e
ct for a constant c 2 IR. Gorostiza (1994)

obtained the process as high density limit of a sequence of branching particle systems where

the mass of each o�spring is equal to that of its parent multiplied by a �xed positive constant

factor, and the mass of any particle does not change during its lifetime, realizing in a particular

case the program mentioned at the end of section 3.

8 Multilevel superprocesses

Multilevel superprocesses arise as limits of multilevel branching particle systems. In a two level

system, objects at the higher level consist of non-trivial sub-populations of objects at the lower

level and both lower level and higher level objects can branch. A lower level object consisting

of a population can be described by a measure on some space S. We can then view a two level

system as a multitype system with I =M(S)Æ, the space of non-trivial �nite Borel measures on

S. Non-local branching is natural in this context. For example, at the particle level the o�spring

of a second order object consisting of a set of particles could consist of a subset of the particles

or include more than one copy of the original particles.

To make this precise, we may let S be a topological Lusin space and f�t : t � 0g be the

Markov process with state spaceM(S)Æ obtained by killing a superprocess at its extinction time.

Then fXt : t � 0g is a Markov process with state space M(E �M(S)Æ), which can be called

a multilevel superprocess generalizing the model of Dawson and Hochberg (1991), Dawson et

al (1990) and Wu (1994). For the multilevel process, it is also natural to study the aggregated

process fYt : t � 0g de�ned by

Yt(A�B) :=

Z
A

Z
M(S)

a(B)Xt(dx;da); A 2 B(E); B 2 B(S): (8.1)

To illustrate the possibilities of non-local branching, consider the case in which E is a sin-

gleton. In this case, we may view fXt : t � 0g as a superprocess with state space M(M(S)Æ).

A possible non-local branching mechanisms is obtained by taking �(�; d�) to be the law of

�(S)

N

NX
i=1

ÆZi ; (8.2)
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where N � 1 is an integer-valued random variable, and fZ1; Z2; � � �g are i.i.d. random variables

in S with distribution �(S)�1�(�). That is, the o�spring of a level two object � 2 M(S) is

a single point measure with the same total mass as � and its location is selected randomly

according to the empirical measure of a sample from the normalized parent distribution.

Another possibility is given by

�(�; d�) = Æ�B (d�); (8.3)

where B 2 B(S) and �B 2 M(S) is de�ned by �B(A) = �(A \ B). In this case the o�spring is

a level two object in which only level one individuals falling in the set B � S are present.

In the case in which E is a countable set, we may interpret theM(E�M(S)Æ)-valued process

fXt : t � 0g as a population in a sequence of islands. The E-coordinate tells in which island the

M(S)Æ-valued objects f�t : t � 0g in the �rst level are located. The non-local branching is given

by �(x; �; d�) = �(�; d�), which only acts on the M(S)Æ-coordinate at the higher level. Jumps

in E described by f�t : t � 0g correspond to the independent migration of \clans" (families of

the lower level) between the islands. Suggestively, we may call fXt : t � 0g a stepping stone

type superprocess.

Properties and applications of multilevel superprocesses involving local branching have been

studied extensively in the literature; see e.g. Dawson and Hochberg (1991), Dawson et al

(1990, 1994, 1995), Etheridge (1993), Gorostiza (1996), Gorostiza et al (1995), Hochberg (1995),

Wu(1994) and the references therein.

9 Age-reproduction-structured superprocesses

Let E be a Lusin topological space and let � = f
 ; (�t; �t; �t);F ;Ft; (y;a;z); g be a Borel Markov

process with state space E � IR+ � IN+, where  is a terminal time; see Sharpe (1988, p.65).

We assume that both �t and �t are non-decreasing processes. Let �(�; �; �) 2 B(E � IR+ � IN+)

and let �(�; �; �; �) be given by (3.31) with x 2 E replaced by (x; a; z) 2 E � IR+ � IN+. As a

special form of the models given in sections 4 and 5, we have a rebirth multitype superprocess

fXt : t � 0g in M(E � IR+ � IN+) with transition probabilities determined by

� expf�Xt(f)g = expf��(Vtf)g; t � 0; f 2 B+(E � IR+
� IN+); (9.1)

where Vtf is the unique bounded positive solution to

Vtf(y; a; z) �

Z
t

0
(y;a;z)[�(�s; �s; �s)�(�s; �s; �s; Vt�sf(�s; 0; 0))1f�s<g]ds (9.2)

= (y;a;z)[f(�t; �t; �t)1f�s<g]:

It is not hard to check that the �rst moments of the superprocess are given by

�fXt(f)g = �(Ttf); f 2 B+(E � IR+
� IN+); (9.3)

where (Tt)t�0 is a semigroup of bounded linear operators on B+(E � IR+ � IN+) de�ned by

Ttf(y; a; z) �

Z
t

0
(y;a;z)[�(�s; �s; �s)m(�s; �s; �s)Tt�sf(�s; 0; 0)1f�s<g]ds (9.4)

= (y;a;z)[f(�t; �t; �t)1f�s<g];
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where m(�; �; �) is given by (3.32) with x 2 E replaced by (x; a; z) 2 E�IR+�IN+. Using (Tt)t�0
we may rewrite (9.2) into

Vtf(y; a; z) +

Z
t

0
Ts[�mVt�sf � �(�; �; �; Vt�sf(�; 0; 0))](y; a; z)ds = Ttf(y; a; z): (9.5)

In the case �t � �0+t, we may call fXt : t � 0g an age-reproduction-structured superprocess.

Heuristically, �t represents the location of a \particle", �t its age and �t the number of its

o�spring born in the time interval (t��t; t]. At each branching time, the particle gives birth to

a random number of o�spring whose motions start from the branching site and whose ages and

reproduction numbers start from zero. The particle does not disappear at its branching times,

it is removed from the population only when its age exceeds the lifetime . An interesting limit

theorem for age-reproduction-structured branching particle systems was proved in Bose and Kaj

(2000) which lead to the superprocess in the special case where E is a singleton and �t � �0.

(Compare (9.5) and their equation (2.8).)
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