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Abstract

The present paper offers a closed-form solution to an unconstrained multi-
period mean-variance problem when the investor’s portfolio consists of a single
stock and bond and where only fairly general conditions are imposed on these
assets. As the reader will see, among the advantages of the proposed solution one
finds that it is general enough to allow for the incorporation of time dependence
in modelling the rate of return, as well as dependence, if one so wishes, on exoge-
nous variables, such as economic factors that might have the property to improve
substantially our ability to assess future rate of return. Our proof is basically
constructive and our argumentation yields as a corollary a security market line
result in a multiperiod capital asset pricing model.

Key Words: multi-period setting, mean-variance analysis, optimal portfolio
strategy

1 INTRODUCTION

Half a century ago portfolio management was at a turning point with the pub-
lication of H. M. Markowitz’s paper [12]. He pioneered the first rigorous treat-
ment of an investor’s dilemma, that is, how to attain higher profits while down-
sizing risk. For his mean-variance approach in portfolio selection, H. Markowitz
received the 1990 Nobel Prize in Economics (shared with M.H. Miller and W.
Sharpe).

Ever since then, mean-variance analysis has been a topic which generates
much interest among researchers as well as practitioners. In the first stage,
single-period analytical solutions were developed by Markowitz [12] and Merton
[14] (1997 Nobel prize in Economics shared with M. S. Scholes) and this naturally
led to the original capital asset pricing model (CAPM). Related research in the
dynamic multiperiod case was done mainly by Tobin [24], Mossin [16], Samuelson
[20], Fama [6], Hakansson [8] [9], Stevens [23], Markowitz [13], Elton and Gruber
[5], Schweizer [21] and Pliska [18]. A detailed historical review of these and other
contributions to the subject can be found in Steinbach [22], which also contains
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a very extensive bibliography of more than 200 references. For the continuous
time version of the problem, the reader should consult Pliska [17], Richardson
[19], Merton [15], Duffie and Richardson [4], Karatzas and Shreve [10] and Korn
and Korn [11].

The present paper offers a closed-form solution to the unconstrained multi-
period mean-variance problem when the investor’s portfolio consists of a single
stock and bond and where only fairly general conditions are imposed on these
assets. As the reader will see, among the advantages of the proposed solution
one finds that it is general enough to allow for the incorporation of time depen-
dence in modelling the rate of return, as well as dependence, if one so wishes, on
exogenous variables, such as economic factors that might have the property to
improve substantially our ability to assess future rate of return.

The paper is organized as follows. In section 2, an expression for the rate of
return of the investor’s portfolio at a given time is developed in terms of the ex-
cess rate of return of the stock over the constant interest rate and is then followed
by the corresponding formulation of the multiperiod mean-variance optimization
problem. We establish key conditional mean, conditional variance and condi-
tional covariance properties of a specific strategy. This strategy is then shown
to be the optimal mean-variance solution. In the process, we supply sufficient
conditions for the boundedness of the mean-variance tradeoff, which is a key hy-
pothesis in the treatment of this problem given in Schweizer [21]. Said sufficient
conditions also allow us to avoid the uniform non degeneracy condition (noted
ND) used there, by replacing it with the weakest requirement possible in the
context of the mean-variance problem, namely that {Rn} forms a submartingale
for the entire duration of the investment. This requirement corresponds to some
optimism on the part of the investor in the sense that the market is expected to
yield a favorable rate of return for the risky asset at every portfolio reshuffling
time. Note that condition (ND) allows Schweizer [21] to draw attention to a fun-
damental link between the existence of a solution to the mean-variance problem
and the topological closure of the set of all processes of discounted gains from
trade. Our proof is basically constructive and offers no such link; on the other
hand, our argumentation yields as a corollary, a new, generalized multiperiod
capital asset pricing model. A wide class of examples are presented in section
3, the examples being chosen according to the following criteria : simplicity of
form of the solution, reduced complexity of the statistical estimation of param-
eters, computational accuracy and efficiency in real-time calculations. Section
4 is devoted to the proofs of the main results presented in section 2. The pa-
per concludes in section 5 with general remarks and indications for the line of
investigation into future studies.

2 MULTIPERIOD SETTING AND SOLUTION TO THE
CORRESPONDING MEAN-VARIANCE PROBLEM

We place ourselves in a context where a small investor holds a portfolio consisting
of one risky asset and one riskless asset in a frictionless market. We use the term
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small investor in the sense that the composition of the portfolio held by this
investor at any given time does not affect future prices in the market.

Let n be the terminal date, then for k = 0, . . . , n, let Pk be the unitary value
of the risky asset at time k, Bk be the unitary value of the riskless asset at time
k and Xk the total value of the portfolio at time k. Let vk−1 be the total value
of the shares of the risky asset held in hand just before time k, Rk = Pk−Pk−1

Pk−1

the rate of return of the risky asset at time k, r = Bk−Bk−1

Bk−1
the constant rate

of return of the riskless asset at time k, then the wealth variation between time
k− 1 and k may be expressed in term of the excess rate of return Rk − r at time
k, as follows :

Xk − Xk−1 = vk−1

(
Pk − Pk−1

Pk−1

)
+ (Xk−1 − vk−1)

(
Bk − Bk−1

Bk−1

)
= vk−1Rk + (Xk−1 − vk−1)r
= vk−1(Rk − r) + rXk−1.

Let ωk = vk−1

Xk−1
be the fraction or weight of the portfolio allocated to the risky

asset just before time k then we have can express the rate of return R̃k of the
portfolio at time k by

R̃k =
Xk − Xk−1

Xk−1
=

vk−1

Xk−1
(Rk − r) + r = ωk(Rk − r) + r.

If ωk ≥ 1 then we are in the presence of a leverage strategy and if ωk ≤ 0
then this denotes a short-selling strategy. On the other hand if 0 ≤ ωk ≤ 1 for
all k then we will say that the portfolio is self-financed. Notice also that in the
multiperiod setting the cumulative rate of return of the portfolio between a given
time k and terminal date n can be expressed as Πn

i=k(1 + R̃i) − 1 .

All random variables in this paper are assumed to be built in a common
probability space (Ω,F , P). All other σ-field defined later will be contained in F .
Consider Fk the σ-field generated by {Pi, 0 ≤ i ≤ k}, Gk the σ-field generated by
exogenous variables called signals {Si, 0 ≤ i ≤ k} and Hk = Fk ∨ Gk . Thus Hk

consists of all information disposable to the agent up to time k concerning the
history of the prices of the risky asset as well as economic indicators of the flow
of the market . Therefore ωk is considered to be Hk−1-measurable, meaning that
the fraction of wealth allocated to the risky asset is determined just before time
k and based on information given up to time k − 1.

The main objective is to develop a strategy that, given a desired expected
cumulative rate of return Πn

i=1(1 + R̃i) − 1 of the portfolio at terminal date n,
minimizes the variance of this global rate of return.

For the following lemmas and theorems define
∑

iεφ αi = 0 and Πiεφαi = 1
for sums and products over the empty set. Furthermore, define recursively for
i = n − 1, n − 2, . . . , 2, 1, 0,
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(2.1) τn−1 =
E

2 [Rn − r|Hn−1]

E

[
(Rn − r)2 |Hn−1

] ,

(2.2) τ i =
E

2
[(

1 −∑n−1
j=i+1 τ j

)
(Ri+1 − r) |Hi

]
E

[(
1 −∑n−1

j=i+1 τ j

)
(Ri+1 − r)2 |Hi

] .
We will show in the following that a portfolio with the weight associated to

the risky asset defined for k = 1, . . . , n by

(2.3)

ωk = −
(

(1 + r) +
λn

2(1 + r)n−kΠk−1
i=1 (1 + R̃i)

)
E

[(
1 −∑n−1

i=k τ i

)
(Rk − r) |Hk−1

]
E

[(
1 −∑n−1

i=k τ i

)
(Rk − r)2 |Hk−1

]
when Πk−1

i=1 (1+ R̃i) > 0 has all the given properties to be an optimal solution
to the unconstrained multiperiod mean-variance portfolio problem if we make a
judicious choice of the constant λn. Motivation for the choice of (2.3) will be
given in the proof of proposition 2.8.

Remark 2.1 In (2.1) and (2.2) the form 0/0 is to be read as 0

For the remainder of the article, we will make the general assumption that
E

[
R2

j

]
< ∞ for all j, which will guarantee the almost sure finiteness of all the

conditional expectations appearing in definitions (2.2), (2.3) and (2.10).

First, we shall exhibit sufficient conditions to safeguard against any one of the
parameters τk and ωk (as well as the optimal λk made explicit in (2.10) below)
being ill-defined.

Lemma 2.2 With the conventions above, there holds almost surely, for every
i ∈ {0, 1, . . . , n − 2}

(2.4) 0 ≤ τ i ≤ E

⎡⎣1 −
n−1∑

j=i+1

τ j |Hi

⎤⎦ ≤ 1.

Lemma 2.3 Under the hypothesis E [τ0] > 0, the parameters appearing in for-
mulas (2.2), (2.3) and (2.10) are well-defined.

The three following key lemmas give explicit expressions for the conditional
mean, conditional variance and conditional covariance of the total rate of return
of the portfolio from a given time up to the terminal date.
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Lemma 2.4 Let λn be a real number. Then for every k = 1, ..., n the weights
given by (2.3) associated with the optimal portfolio, satisfy

E

[
Πn

i=k(1 + R̃i)|Hk−1

]
= (1 + r)n−k+1

E

[
1 −
∑n−1

i=k−1
τ i|Hk−1

]
(2.5)

− λn

2Πk−1
i=1 (1 + R̃i)

E

[∑n−1

i=k−1
τ i|Hk−1

]
.

on all trajectories such that Πk−1
i=1 (1 + R̃i) > 0.

Lemma 2.5 Let λn be a real number. Then for every k = 1, ..., n the weights
given by (2.3) associated with the optimal portfolio, satisfy

E

[
Πn

i=k(1 + R̃i)2|Hk−1

]
= (1 + r)2(n−k+1)

E

[
1 −
∑n−1

i=k−1
τ i|Hk−1

]
(2.6)

+
λ2

n

4Πk−1
i=1 (1 + R̃i)2

E

[∑n−1

i=k−1
τ i|Hk−1

]
.

on all trajectories such that Πk−1
i=1 (1 + R̃i) > 0.

Lemma 2.6 Let λn be a real number. Then for every k = 1, ..., n and every ar-
bitrary portfolio Q the weights given by (2.3) associated with the optimal portfolio
P , satisfy

E

[
Πn

i=k(1 + R̃P
i )(1 + R̃Q

i )|Hk−1

]
(2.7)

= (1 + r)2(n−k)+1

(
λn

2(1 + r)n−kΠk−1
i=1 (1 + R̃P

i )

)
E

[
1 −
∑n−1

i=k−1
τ i|Hk−1

]
+ (1 + r)2(n−k)+2

E

[
1 −
∑n−1

i=k−1
τ i|Hk−1

]
− λn

2Πk−1
i=1 (1 + R̃P

i )
E

[
Πn

i=k(1 + R̃Q
i )|Hk−1

]
.

on all trajectories such that Πk−1
i=1 (1 + R̃P

i ) > 0.

Remark 2.7 From lemmas 2.4, 2.5 and 2.6, we can establish

COV

(
Πn

i=k(1 + R̃P
i ), Πn

i=k(1 + R̃Q
i )|Hk−1

)
(2.8)

=

(
(1 + r)n−k+1 +

λn

2Πk−1
i=1 (1 + R̃P

i )

)
E

(
1 −
∑n−1

i=k−1
τ i|Hk−1

)
×
(
(1 + r)n−k+1 − E

(
Πn

i=k(1 + R̃Q
i )|Hk−1

))
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and

VAR

(
Πn

i=k(1 + R̃P
i )|Hk−1

)
(2.9)

=

(
(1 + r)n−k+1 +

λn

2Πk−1
i=1 (1 + R̃P

i )

)2

E

[∑n−1

i=k−1
τ i|Hk−1

]
×
(
1 − E

[∑n−1

i=k−1
τ i|Hk−1

])
for all values of k = 1, 2, . . . n and all trajectories such that Πk−1

i=1 (1+R̃P
i ) > 0.

Now we are in the position to propose a solution to the classical multiperiod
Markowitz problem in the case where the investor as a portfolio consisting of one
riskless asset with constant rate of return and one risky asset.

Theorem 2.8 Given is some constant c > 0, the overall target rate of return.
Assume that the portfolio weights ωk, k = 1, ..., n appearing in (2.3) are such that,
under the conventions detailed immediately prior to the statement of lemma 2.2,
there holds E

[
Πn

i=1(1 + R̃i)
]

= 1 + c ≥ (1 + r)n. The specific choice of weight
defined by setting

(2.10) λn = 2

[
(1 + r)n − (1 + c)∑n−1

i=0 E(τ i)
− (1 + r)n

]

in (2.3) minimizes the variance VAR

[
Πn

i=1(1 + R̃i)
]
, on the set of all trajectories

such that Πk−1
i=1 (1 + R̃P

i ) > 0, its minimal value being given by

(2.11) VAR

[
Πn

i=1(1 + R̃i)
]

= ((1 + r)n − (1 + c))2
[

1∑n−1
i=0 E(τ i)

− 1

]
.

Corollary 2.9 In theorem (2.8), if we enlarge the family of portfolios to all
those satisfying E

[
Πn

i=1(1 + R̃i)
]

= 1+c ≥ (1 + r)n then the optimal solution re-
mains the same. (This follows immediately because the variance is an increasing
function of c)

The following shows that a solution to the multiperiod mean-variance problem
gives rise to a natural extension of the classical capital asset pricing model in a
multiperiod setting.

Corollary 2.10 Let P be a portfolio with weights ωk, k = 1, ..., n satisfying
the conditions of proposition 2.8 then for every other portfolio Q we have

(2.12) E

[
Πn

i=1(1 + R̃Q
i )
]
− (1 + r)n = βn

(
E

[
Πn

i=1(1 + R̃P
i )
]
− (1 + r)n

)
where
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(2.13) βn =
COV

(
Πn

i=1(1 + R̃P
i ), Πn

i=1(1 + R̃Q
i )
)

VAR

(
Πn

i=1(1 + R̃P
i )
) .

Remark 2.11 When n = 1 one recovers the classical (single period) CAPM.
See, for example Pliska [18].

3 EXAMPLES

In this section, we shall exhibit several rich classes of models for the excess rate
of return (Rn− r) of a risky asset at time n. These models were selected in order
to satisfy certain basic criteria, namely simplicity of use, computational efficiency
and interpretability. All of them offer a simplified symbolic representation for
the optimal values of the parameters τk, ωk and λk defining the solution to the
multiperiod mean-variance portfolio, given by equations (2.2), (2.3) and (2.10).
Many will be seen to afford computational implementations with tractability
throughout the calculation process, thereby ensuring accurate results in real time,
even when parameter estimation is required. Lastly, the models will allow for
interpretation and insight.

Example 3.1 Our first example is a very general class of models driven by
independent multiplicative market impulses (hereafter called the IMMI class).
To describe this class, we first need a sequence of independent random variables
{ξk : k ≥ 1}, where ξn represents the random fluctuations (the noise) of the
relevant part of the market at time n. All we require of the sequence {ξk : k ≥ 1}
is that it should be adapted to the filtration {Hk : k ≥ 1}, which just means
that ξk is Hk-measurable for each k ≥ 1; and that it should be independent of
the whole past of the market, in other words, that ξk is not only independent of
ξ1, ξ2, . . . , ξk−1 but of the whole of Hk−1.

More precisely, we assume that (Rn − r) is given by some Hn−1-measurable
real-valued random variable Ψn−1 which is perturbed by real-valued market im-
pulse Φn(ξn), in the following multiplicative form : for every n ≥ 1, we have

(3.1) Rn − r = Φn(ξn) · Ψn−1.

Here Φn denotes some real-valued measurable mapping, arbitrary for now but
key to the nature of the market fluctuations for the risky asset under consider-
ation. Whereas the choice for Ψn−1 is entirely up to you — pick your favorite
predictive model for the average behavior of the excess rate for this asset! For
instance, any measurable function giving rise to random variable Ψn−1 in the
guise Ψn−1 = Ψn−1(ξ1, ξ2, . . . , ξn−1, R1, R2, . . . , Rn−1) will do. Specific examples
are given below.
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In fact, we shall see that Ψn−1 is completely irrelevant to the determination
of two of the families of parameters ({τ i} and {λi})— its influence is felt only
in the determination of the third family (the weights ωi themselves), as one sees
clearly in formula (2.10) for λi and in the forthcoming simplified formula (3.4)
for τ i. This observation will be important when discussing estimation procedures
in practical settings — read on to the next example for details.

This IMMI class is characterized by the fact that the noise source acts by
dilating or compressing the signal, rather than translating it, as do additive
models, thereby ensuring (by way of a scaling effect) that the fluctuations of the
excess rate around its mean value are heteroscedastic in all but the most trivial
special cases.

Another important observation to make about the IMMI class as a whole,
is that combining its defining equation (3.1) together with our assumptions on
both market noise and predictive model, implies

(3.2) E [Rn − r|Hn−1] = E (Φn (ξn)) · Ψn−1.

This simple representation for the one-step ahead average value of the ex-
cess rate, allows us to see at once that some simple restrictions on said noise
and model will ensure some very good features indeed. When a bull market is
expected for the risky asset, the sequence {Rn − r} should form a submartin-
gale and a clearly sufficient condition for this to happen is for both sequences
{E (Φn (ξn))} and {Ψn−1} to remain strictly positive at all times. When a bear
market is in the cards, {Rn − r} should form a supermartingale instead and for
this, it is sufficient for the sequence {E (Φn (ξn))} to remain strictly positive at
all times while the sequence {Ψn−1} remains strictly negative. Note that good
modelling entails strict positivity of the sequence of average noise {E (Φn (ξn))}
in all circumstances, since otherwise at some time n our predictive model Ψn−1

would have a (highly undesirable) mean of opposite sign from that of its intended
target Rn − r.

Let us begin with the expression for τ i in (2.2). Independence of the impulses
turns all these random parameters into constants and reduces their successive
values (for i = n − 1, n − 2, . . . , 2, 1, 0) to

τn−1 =
E

2 [(Rn − r)|Hn−1]
E [(Rn − r)2|Hn−1]

=
E

2Φn(ξn)
EΦ2

n(ξn)
,(3.3)

τ i =

⎛⎝1 −
n−1∑

j=i+1

τ j

⎞⎠ E
2Φi+1(ξi+1)

EΦ2
i+1(ξi+1)

,(3.4)

τ0 =

⎛⎝1 −
n−1∑
j=1

τ j

⎞⎠ E
2Φ1(ξ1)

EΦ2
1(ξ1)

.(3.5)

The expectation in (2.10) for λn can be removed for the IMMI class; the
optimal weight ωk associated to the risky asset in (2.3), now simplifies to
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(3.6) ωk = −
(

(1 + r) +
λn

2(1 + r)n−kΠk−1
i=1 (1 + R̃i)

)
EΦk(ξk)

Ψk−1EΦ2
k(ξk)

.

The reader will note that while some simplifications have been obtained for
the defining parameters in (2.2), (2.3) and (2.10) by working with the general
IMMI class, the number of parameters to be estimated remains too high for prac-
tical purposes. The SIMMI subclass defined next will correct this shortcoming.

Example 3.2 When the driving noise in the IMMI class is assumed to be of
the form {Φ(ξk) : k ≥ 1}, with a single function Φ and a sequence {ξk : k ≥ 1}
which is now assumed to be not only independent, but identically distributed as
well, we get what will be called the stationary IMMI class (for short, the SIMMI
class). (Beware! The sequence of excess rates of return {Rk − r : k ≥ 1} will
not in general form a stationary stochastic process, only the sequence of market
impulses {Φ(ξk) : k ≥ 1} will exhibit this property, since it is built into it.)
Because of these restrictions, the parameters {τ i : i = 0, 1, . . . , n − 1} in (2.2)
now form the first few terms of a geometric progression : if we denote

(3.7) ρ = τn−1 =
E

2Φ (ξ1)
EΦ2 (ξ1)

,

then clearly we have τn−2 = ρ (1 − ρ) and more generally

(3.8) τ i = ρ (1 − ρ)n−i−1 for i = 0, 1, 2, . . . , n − 1.

Furthermore, expression (2.10) becomes

(3.9) λn = 2
[
(1 + r)n − (1 + c)

1 − (1 − ρ)n
− (1 + r)n

]
.

It follows that, with a selection from the SIMMI class, at the preceding rein-
vestment time k− 1, both parameters λk and τk are completely known functions
of the single unknown parameter ρ ∈ [0, 1], which must be estimated by some
well chosen function ρ̂n of the data {c, r, R1, . . . , Rk−1} - for instance, one might
choose the asymptotically unbiased moment estimator given by

ρ̂n =
[
∑n

i=1 Φ (ξi)]
2

n
∑n

i=1 Φ2 (ξi)
,

whereas optimal portfolio weight ωk can now be written in the form

(3.10) ωk = −
(

(1 + r) +
λn

2(1 + r)n−kΠk−1
i=1 (1 + R̃i)

)
ρ

Ψk−1EΦ (ξ1)
,
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a known function of ρ, EΦ (ξ1) and Ψk−1. Therefore, computation of the optimal
weights can be effected explicitly with the estimation of only two parameters (ρ
and EΦ (ξ1) ), once the true market signals {Ψj : j < k} for all preceding times,
have been extracted from the noisy data {Rj : j < k}. More on this in the special
cases below.

Another nicety about the SIMMI class is that heteroscedasticity remains built
into it, just as in the larger IMMI class, even though the market impulse is clearly
homoscedastic in the SIMMI class. The reason for this is the multiplicative
nature of (3.1), which renders the variance of Rn non constant in all but the
most trivial examples (the Cox-Rubinstein model being a case in point, as we
shall see shortly).

We are now ready to investigate a number of members of the SIMMI class of
models, which possess all three desired properties of a good model stated at the
beginning of the present section.

Example 3.3 The Cox-Rubinstein model turns out to be in the SIMMI class.
Just take Φ(ξk) = μ − r + σξk (with Eξk = 0 and Eξ2

k = 1) and Ψk identically
equal to one, for all values of k ≥ 0. The Cox-Rubinstein model is thus written
Rn− r = μ− r +σξn, the excess rates of return itself now being independent and
identically distributed from one time point to another. The optimal solution is
still given by (3.6), with (3.9), (3.8) and (3.7), but now simplifies to

(3.11) ωk = −
⎛⎝(1 + r) +

λn

2 (1 + r)n−k Πk−1
i=1

(
1 + R̃i

)
⎞⎠ μ − r

(σ2 + (μ − r)2)

with ρ = (μ − r)2 /(σ2 + (μ − r)2).

Estimation of the parameters here reduces to that of the first and second
moments μ and σ2 since Ψk is known. Unbiased estimators are readily obtained
: just take the sample mean and variance for the observations Rn up to the
present time. This example also brings forth yet another nice property of the
SIMMI class, namely that it also includes linear and non multiplicative models
through the incorporation of some market modelling into the noise, thus making
the class even richer.

Example 3.4 It is very satisfying to notice that all classical and non-centered
ARCH(p,q), MARCH(p,q), as well as those GARCH(p,q) models such that ξn

form independent identically distributed random variables, also belong to the
SIMMI class.

Indeed, following Guégan [7] (chapter 5), GARCH(p,q) models can be written
in the form (3.1) with each market impulse ξn obeying a normal distribution
N(μ − r, σ2) (here Φ(ξ) = ξ) and market signals of the form Ψn−1 =

√
hn−1

where the structure

(3.12) hn−1 = α0 +
∑q

i=1
αi(Rn−i − r)2 +

∑p

j=1
βjhn−j
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requires α0 > 0, αi ≥ 0, βj ≥ 0, q > 0 and p ≥ 0.

Note that ARCH(p,q) models are simply those for which βj = 0.
Meanwhile MARCH(p,q) models are exactly of the form (3.1) when ξn has

a normal distribution N(μ − r, 1) (here again Φ(ξ) = ξ) and Ψn−1 =
√

hn−1 is
now given by

(3.13) hn−1 = σ ·
∏q

i=1

(
ξn−i

)2αi ·
∏p

j=1
(Rn−j − r)2βi

provided the roots of polynomials 1−α1x− . . .−αqx
q and 1−β1x− . . .−βpx

p are
all larger than 1 and distinct, in order to preclude explosion in finite time. The
classical GARCH(p,q) and MARCH(p,q) models correspond to the case where
τ0 = μ − r = 0. The condition E (τ0) > 0 in lemma 2.3 is equivalent here to the
case μ > r of noncentral GARCH(p,q) and MARCH(p,q) processes.

It is important to note here that all MARCH(p,q) models are stationary in
the wide sense (the autocorrelations are null since the multiplicative noises are
centered and independent of the past), which renders their use with excess rate
data sometimes unrealistic. Those GARCH(p,q) models suffering the same fate
are identified in Bollerslev [1].

In both cases, the statistical estimation of all these parameters has been the
subject of much research and the reader will find explicit solutions proposed in
Guégan [7] (chapter 5) for the classical GARCH(p,q) model and Brockwell and
Davis [2] (chapter 8) for the classical MARCH(p,q) model, once it is noticed (for
this last collection) that log(Rn − r)2 is actually a classical ARMA(p,q) model
with nongaussian noise as soon as Rn − r is assumed to follow a MARCH(p,q)
model.

Now the following examples will allow us to compare, by mean of simulation,
the numerical precision as well as the real time calculation of the optimal solution
for two widely used models in mathematical finance.

Example 3.5 Let{Sj , j = 1 . . . k} the set of all possible states, X0 a given ran-
dom variable with distribution P

(
X0 = Sj

)
= p0

j , {Xn
i , i = 1 . . . k} independent

random variables with stationary distribution P (Xn
i = Sj) = pij .

Then {Rj − r, j = 1 . . . n} follows a stationary Markov chain model with possible
states {Sj , j = 1 . . . k} which means that{Rj − r, j = 1 . . . n} satisfies

R0 − r = X0

Rn − r =
k∑

i=1

Xn
i Ii (Rn−1 − r)

where the function Ii (u) is equal to 1 if u = Si and 0 otherwise.

By setting

Ψn−1 = (Ψnj)
k
j=1 with Ψnj = Ij (Rn−1 − r)

Φn = (Φnj)
k
j=1 with Φnj = Xn

j

11



we obtain

Rn − r = Φn • Ψn−1

where • denotes the scalar product in R
k.

This lead us to notice that this model does not belong to the IMMI class but
might well belong to an even larger class, namely the vectorial version of the
IMMI class. In fact the model is a superposition of SIMMI models.

Let c be the desired expected global rate of return of the investor’s portfolio,
r the periodical interest rate, n the number of periods, k the number of states,
S the state matrix, P the transition matrix [pi,l]k×k, P0 the initial distribution
matrix [pi]

k
i=1. For instance let r = 0.05

365 (5% annual interest rate compounded

daily), c =
(
1 + 0.06

365

)n − 1 (6% annual growth rate compounded daily) , k = 2,

S =
[

0.17
365 −0.11

365

]
,

P0 =
[

4
7

3
7

]
,

P =
[

0.7 0.3
0.4 0.6

]
.

First, notice that for every j = 1 . . . n,

E (Rj − r|Hj−1) =

⎧⎨⎩
0.086
365 if Rj−1 − r = 0.17

365

0.002
365 if Rj−1 − r = −0.11

365

VAR (Rj − r|Hj−1) =

⎧⎨⎩
0.016464

3652 if Rj−1 − r = 0.17
365

0.018816
3652 if Rj−1 − r = −0.11

365

thus E (Rj − r) = 0.05
365 and VAR (Rj − r) = 0.0192

3652 .

Following each time the optimal portfolio strategy, the tables shown below gives
the main characteristics obtained from 200 simulations using the Maple routine
given in Appendix A of Watier [25] for each of the n = 30, n = 90, n = 180
horizons.

n = 30 Values
Desired global rate of return c 0.004943279454
Average global rate of return 0.004937887242

Variance of the global rate of return 0.101021453610 × 10−7

Average annual rate of return (compounded daily) 0.059934706561
Average calculation time of the strategy (seconds) 2.79

12



n = 90 Values
Desired global rate of return c 0.014903267192
Average global rate of return 0.014903294158

Variance of the global rate of return 0.371719591910 × 10−15

Average annual rate of return (compounded daily) 0.060000107774
Average calculation time of the strategy (seconds) 8.95

n = 180 Values
Desired global rate of return c 0.030028641757
Average global rate of return 0.030028641758

Variance of the global rate of return 0.135582624510 × 10−27

Average annual rate of return (compounded daily) 0.060000000001
Average calculation time of the strategy (seconds) 20.78

Example 3.6 Let{Sj , j = 1 . . . k} the set of all possible states, {Xn
i , i = 1 . . . k}

independent random variables with stationary distribution P (Xn
i = Sj) = pij in-

dependent of i.

Then {Rj − r, j = 1 . . . n} follow a multinomial tree model with possible states
{Sj , j = 1 . . . k} and following the previous example, we obtain

Rn − r = Xn

= Φn • 1.

Consequently this model belongs to the SIMMI class where

P (Rj − r = Si|Hj−1) = P (Rj − r = Si) = pi.

The very popular multinomial tree model is just a special case of the Markov
chain models of example 3.5. We therefore use the same notation and numerical
values for the sake of comparisons, with the exception of the transition matrix,
here equal to that prescribed by the stationary distribution from example 3.5,
namely

P =
[

4
7

3
7

4
7

3
7

]
.

First, notice that for every j = 1 . . . n,

E (Rj − r|Hj−1) = E (Rj − r) =
0.05
365

VAR (Rj − r|Hj−1) = VAR (Rj − r) =
0.0192
3652

thus E (Rj − r) and VAR (Rj − r) are the same as the preceding markovian
model.

The tables shown below gives the main characteristics obtained from 1000
simulations using the Maple routine given in Appendix B of Watier [25] for each
of the n = 30, n = 90, n = 180 horizons.

13



n = 30 Values
Desired global rate of return c 0.004943279454
Average global rate of return 0.004944582121

Variance of the global rate of return 0.599072752710 × 10−8

Average annual rate of return (compounded daily) 0.060015773736
Average calculation time of the strategy (seconds) 0.14

n = 90 Values
Desired global rate of return c 0.014903267192
Average global rate of return 0.014903288190

Variance of the global rate of return 0.382160534110 × 10−13

Average annual rate of return (compounded daily) 0.060000083921
Average calculation time of the strategy (seconds) 0.41

n = 180 Values
Desired global rate of return c 0.030028641757
Average global rate of return 0.030028641758

Variance of the global rate of return 0.311035740510 × 10−22

Average annual rate of return (compounded daily) 0.060000000002
Average calculation time of the strategy (seconds) 0.99

We notice that both models give similar numerical results but the average cal-
culation time of a strategy is about 20 times superior in the two state markovian
model compared to the binomial model.

4 PROOFS

4.1 Proof of lemma 2.2

We will use a backward induction on k. The property is easily satisfied in the
base case (for k = n − 1) that is

(4.1) 0 ≤ τn−1 =
E

2 [(Rn − r)|Hn−1]
E [(Rn − r)2|Hn−1]

≤ 1.

Suppose that the inequalities are satisfies for k = l that is

(4.2) 0 ≤ τ l ≤ E

[
1 −
∑n−1

i=l+1
τ i|Hl

]
≤ 1

then to show the first inequality 0 ≤ τ l−1 we only need to prove that the denom-
inator of τ l−1is positive. From the second inequality in (4.2) we obtain

τ l ≤ E

[
1 −
∑n−1

i=l+1
τ i|Hl

]
=⇒ 0 ≤ E

[
1 −
∑n−1

i=l
τ l|Hl

]
(4.3)

=⇒ 0 ≤ E

[
1 −
∑n−1

i=l
τ l|Hl

]
(Rl − r)2

=⇒ 0 ≤ E

[
E

[
1 −
∑n−1

i=l
τ l|Hl

]
(Rl − r)2|Hl−1

]
=⇒ 0 ≤ E

[(
1 −
∑n−1

i=l
τ l

)
(Rl − r)2|Hl−1

]
14



now we prove the second inequality τ l−1 ≤ E

[
1 −∑n−1

i=l τ i|Hl−1

]
, from (4.3)

we may write τ l−1 as follows

τ l−1 =
E

2
[(

1 −∑n−1
i=l τ i

)
(Rl − r)|Hl−1

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2|Hl−1

]
=

E
2
[
E

(
1 −∑n−1

i=l τ i|Hl

)
(Rl − r)|Hl−1

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2 |Hl−1

]

=
E

2

[(
E

(
1 −∑n−1

i=l τ i|Hl

))1/2 (
E

(
1 −∑n−1

i=l τ i|Hl

))1/2
(Rl − r)|Hl−1

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2 |Hl−1

] .

Applying the Cauchy-Schwarz inequality to the numerator we have

τ l−1 ≤
E

[
E

(
1 −∑n−1

i=l τ i|Hl

)
|Hl−1

]
E

[(
1 −∑n−1

i=l τ i|Hl

)
(Rl − r)2 |Hl−1

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2 |Hl−1

]
=

E

[
1 −∑n−1

i=l τ i|Hl

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2 |Hl−1

]
E

[(
1 −∑n−1

i=l τ i

)
(Rl − r)2 |Hl−1

]
= E

[
1 −
∑n−1

i=l
τ i|Hl

]
.

Finally we show the third inequality E

[
1 −∑n−1

i=l τ i|Hl−1

]
≤ 1, now using

both the first and third inequality in (4.2), we obtain

E

[
1 −
∑n−1

i=l
τ i|Hl−1

]
= E

[(
E

(
1 −
∑n−1

i=l+1
τ i|Hl

)
− τ l

)
|Hl−1

]
= E

[
E

(
1 −
∑n−1

i=l+1
τ i|Hl

)
|Hl−1

]
− E [τ l|Hl−1]

≤ E

[
E

(
1 −
∑n−1

i=l+1
τ i|Hl

)
|Hl−1

]
≤ 1.

4.2 Proof of lemma 2.3

The first condition immediately yields the well posedness of formula (2.10) for
each and every {λn : n = 1, 2, ...} . The second condition ensures that the first
denominator in (2.3) for each and every {ωk : k = 1, ..., n} is non null. Since
formulas (2.2) and (2.3) will thus both be well-defined once we have established
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that a null denominator in (2.2) implies a null numerator in both (2.2) and (2.3),
this is all we have left to do. Applying the Cauchy-Schwarz inequality to a split
form of the numerator of τ i in (2.2) we get

0 ≤ E
2
[(

1 −
∑n−1

j=i+1
τ j

)
(Ri+1 − r) |Hi

]
≤ E

[(
1 −
∑n−1

j=i+1
τ j

)
|Hi

]
· E

[(
1 −
∑n−1

j=i+1
τ j

)
(Ri+1 − r)2 |Hi

]
using lemma 2.2 to establish the nonnegativity of the terms under the square

roots. Hence if the RHS is null so is the LHS.

4.3 Proof of lemma 2.4

By backward induction. The property is easily satisfied for k = n using formulae
(2.2) and (2.3). Notice that, by the tower property

E

[
Πn

i=k−1(1 + R̃i)|Hk−2

]
= E

[
(1 + R̃k−1)E

[
Πn

i=k(1 + R̃i)|Hk−1

]
|Hk−2

]
.

Now suppose the property is verified for k = l, with ωl, ..., ωn as defined by
(2.3), by the induction hypothesis, we obtain

E

[
Πn

i=l−1(1 + R̃i)|Hl−2

]
= (1 + r)n−l+1

E

(
(1 + R̃l−1)

(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

)
− λn

2Πl−2
i=1(1 + R̃i)

E

(∑n−1

i=l−1
τ i|Hl−2

)
= (1 + r)n−l+2

E

(
1 −
∑n−1

i=l−1
τ i|Hl−2

)
+ (1 + r)n−l+1 ωl−1E

((
1 −
∑n−1

i=l−1
τ i

)
(Rl−1 − r) |Hl−2

)
− λn

2Πl−2
i=1(1 + R̃i)

E

(∑n−1

i=l−1
τ i|Hl−2

)
.

Substituting the value of ωl−1 in the last equation, we deduce

E

[
Πn

i=l−1(1 + R̃i)|Hl−2

]
= (1 + r)n−l+2

E

(
1 −
∑n−1

i=l−2
τ i|Hl−2

)
− λn

2Πl−2
i=1(1 + R̃i)

E

(∑n−1

i=l−2
τ i|Hl−2

)
.

4.4 Proof of lemma 2.5

By backward induction. The property is easily satisfied for k = n, just like for
the base case in the previous proof . Notice that, by the tower property
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E

[
Πn

i=k−1(1 + R̃i)2|Hk−2

]
= E

[
(1 + R̃k−1)2E

[
Πn

i=k(1 + R̃i)2|Hk−1

]
|Hk−2

]
Now suppose the property is verified for k = l, with ωl, ..., ωn as defined by

(2.3), by the induction hypothesis, we obtain

E

[
Πn

i=l−1(1 + R̃i)2|Hl−2

]
= (1 + r)2(n−l+1)

E

(
(1 + R̃l−1)2

(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

)
+

λ2
n

4Πl−2
i=1(1 + R̃i)2

E

(∑n−1

i=l−1
τ i|Hl−2

)
= (1 + r)2(n−l+2)

E

(
1 −
∑n−1

i=l−1
τ i|Hl−2

)
+2 (1 + r)2(n−l+1)+1 ωl−1E

((
1 −
∑n−1

i=l−1
τ i

)
(Rl−1 − r) |Hl−2

)
+ (1 + r)2(n−l+1) ω2

l−1E

((
1 −
∑n−1

i=l−1
τ i

)
(Rl−1 − r)2 |Hl−2

)
+

λ2
n

4Πl−2
i=1(1 + R̃i)2

E

(∑n−1

i=l−1
τ i|Hl−2

)
.

Substituting the value of ωl−1 in the last equation, we deduce

E

[
Πn

i=l−1(1 + R̃i)2|Hl−2

]
= (1 + r)2(n−l+2)

E

(
1 −
∑n−1

i=l−2
τ i|Hl−2

)
+

λ2
n

4Πl−2
i=1(1 + R̃i)2

E

(∑n−1

i=l−2
τ i|Hl−2

)
.

4.5 Proof of lemma 2.6

Let γi be the Hi−1 -measurable random variable corresponding to the weight of
the arbitrary portfolio Q allocated to the risky asset just before time i. The proof
involves once again a backward induction. However the base case k = n here is
nontrivial and we provide the details of the proof. Indeed there comes

E

[
(1 + R̃P

n )(1 + R̃Q
n )|Hn−1

]
= E [((1 + r) + ωn (Rn − r)) ((1 + r) + γn (Rn − r)) |Hn−1]
= (1 + r)2 + (1 + r)ωnE [Rn − r|Hn−1] + (1 + r) γnE [Rn − r|Hn−1]

+ωnγnE

[
(Rn − r)2 |Hn−1

]
.

Substituting the value of ωn in the last equation, we deduce
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E

[
(1 + R̃P

n )(1 + R̃Q
n )|Hn−1

]
= (1 + r)2 − (1 + r)

(
(1 + r) +

λn

2Πn−1
i=1 (1 + R̃P

i )

)
τn−1

+ (1 + r) γnE [Rn − r|Hn−1]

−γn

(
(1 + r) +

λn

2Πn−1
i=1 (1 + R̃P

i )

)
E [Rn − r|Hn−1]

= (1 + r)2 − (1 + r)

(
(1 + r) +

λn

2Πn−1
i=1 (1 + R̃P

i )

)
τn−1

− λn

2Πn−1
i=1 (1 + R̃P

i )
E [γn (Rn − r) |Hn−1]

= (1 + r)2 (1 − τn−1) − (1 + r)
λn

2Πn−1
i=1 (1 + R̃P

i )
τn−1

− λn

2Πn−1
i=1 (1 + R̃P

i )
E

[(
1 + R̃Q

n

)
− (1 + r) |Hn−1

]
= (1 + r)

(
(1 + r) +

λn

2Πn−1
i=1 (1 + R̃P

i )

)
(1 − τn−1)

− λn

2Πn−1
i=1 (1 + R̃P

i )
E

[
1 + R̃Q

n |Hn−1

]
.

For the remainder of the proof, we repeatedly need the tower property, namely
for any l = 1, ..., n

E

[
Πn

i=l−1(1 + R̃P
i )(1 + R̃Q

i )|Hl−2

]
= E

[
(1 + R̃P

l−1)(1 + R̃Q
l−1)E

(
Πn

i=l(1 + R̃P
i )(1 + R̃Q

i )|Hl−1

)
|Hl−2

]
.

Now suppose that property (2.7) is verified for k = l, with ωl, ..., ωn as defined
by (2.3), by the induction hypothesis, we obtain

E

[
Πn

i=l−1(1 + R̃P
i )(1 + R̃Q

i )|Hl−2

]
= E

[
(1 + R̃P

l−1)(1 + R̃Q
l−1) (1 + r)2(n−l)+1

×
(

(1 + r) +
λn

2(1 + r)n−lΠl−1
i=1(1 + R̃P

i )

)
E

[
1 −
∑n−1

i=l−1
τ i|Hl−1

] ∣∣∣Hl−2

]

−E

[
λn

2Πl−1
i=1(1 + R̃P

i )
E

[
(1 + R̃P

l−1)(1 + R̃Q
l−1)Π

n
i=l(1 + R̃Q

i )|Hl−1

]
|Hl−2

]
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= (1 + r)2(n−l+1)
E

[
(1 + R̃P

l−1)(1 + R̃Q
l−1)

(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
+(1 + r)n−l+1 λn

2Πl−2
i=1(1 + R̃P

i )
E

[
(1 + R̃Q

l−1)
(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
− λn

2Πl−2
i=1(1 + R̃P

i )
E

[
Πn

i=l−1(1 + R̃Q
i )|Hl−2

]
.

On the other hand, when writing R̃Q
l−1 − r = γl−1 (Rl−1 − r) we get (for the

expectation in the first term after the last equality)

E

[
(1 + R̃P

l−1)(1 + R̃Q
l−1)

(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
= E

[
((1 + r) + ωl−1 (Rl−1 − r))

(
(1 + r) + γl−1 (Rl−1 − r)

)
×
(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
.

Substituting the value of ωl−1 in the last equation, we deduce

= (1 + r)2 E

[
1 −
∑n−1

i=l−1
τ i|Hl−2

]
− (1 + r)

(
(1 + r) +

λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

)
τ l−2

+ (1 + r) γl−1E

[
(Rl−1 − r)

(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
−
(

(1 + r) +
λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

)
×γl−1E

[(
1 −
∑n−1

i=l−1
τ i

)
(Rl−1 − r) |Hl−2

]
= (1 + r)2 E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
− λn

2(1 + r)n−lΠl−2
i=1(1 + R̃P

i )
τ l−2

− λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

×E

[(
1 −
∑n−1

i=l−1
τ i

)((
1 + R̃Q

l−1

)
− (1 + r)

)
|Hl−2

]
= (1 + r)2 E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
+

λn

2(1 + r)n−lΠl−2
i=1(1 + R̃P

i )
E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
− λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )
E

[(
1 −
∑n−1

i=l−1
τ i

)(
1 + R̃Q

l−1

)
|Hl−2

]
= (1 + r)

(
(1 + r) +

λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

)
E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
− λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )
E

[(
1 −
∑n−1

i=l−1
τ i

)(
1 + R̃Q

l−1

)
|Hl−2

]
.
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Thus it ensues

E

[
Πn

i=l−1(1 + R̃P
i )(1 + R̃Q

i )|Hl−2

]
= (1 + r)2(n−l+1)+1

(
(1 + r) +

λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

)
×E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
− (1 + r)2(n−l+1) λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

×E

[(
1 −
∑n−1

i=l−1
τ i

)(
1 + R̃Q

l−1

)
|Hl−2

]
+(1 + r)n−l+1 λn

2Πl−2
i=1(1 + R̃P

i )
E

[
(1 + R̃Q

l−1)
(
1 −
∑n−1

i=l−1
τ i

)
|Hl−2

]
− λn

2Πl−2
i=1(1 + R̃P

i )
E

[
Πn

i=l−1(1 + R̃Q
i )|Hl−2

]
= (1 + r)2(n−l+1)+1

(
(1 + r) +

λn

2(1 + r)n−l+1Πl−2
i=1(1 + R̃P

i )

)
×E

[
1 −
∑n−1

i=l−2
τ i|Hl−2

]
− λn

2Πl−2
i=1(1 + R̃P

i )
E

[
Πn

i=l−1(1 + R̃Q
i )|Hl−2

]
.

4.6 Proof of theorem 2.8

We minimize E

[
Πn

i=1(1 + R̃i)
]2

under the constraint E

[
Πn

i=1(1 + R̃i)
]

= 1 + c

and the result will follow. Let us denote L2 the space of square-integrable random
variables on (Ω,F , P). Let F :

(
L2
)n × R → R be defined by :

F (ω1, ..., ωn, λn) = E

[
Πn

i=1(1 + R̃i)
]2

+ λn

(
E

[
Πn

i=1(1 + R̃i)
]
− (1 + c)

)
.

A quick inspection of the definition of functional F reveals the fact that, as
the expectation of a quadratic form in parameters ωi for every value of i, it is a
continuous (Gâteaux) differential functional on its defining space of square inte-
grable functions (see page 32 of Clarke [3]). Hence it is also strictly differentiable
and Clarke’s version of the Lagrange Multiplier Rule (his theorem 6.1.1 on page
228) is therefore applicable to our optimization problem. Hence its solution must
satisfy for each k = 1, ..., n

0 =
∂F (ω1, ..., ωn, λn)

∂ωk

=
∂

∂ωk

[
E

(
Πn

i=1(1 + R̃i)2
)

+ λn

(
E

(
Πn

i=1(1 + R̃i)
)
− (1 + c)

)]
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= E

[
∂

∂ωk

((
Πn

i=1(1 + R̃i)2
)

+ λn

((
Πn

i=1(1 + R̃i)
)
− (1 + c)

))]
= E

((
2Πn

i=1(1 + R̃i) + λn

) ∂

∂ωk

(
Πn

i=1(1 + R̃i)
))

= E

((
2Πn

i=1(1 + R̃i) + λn

)(
Πn

i=1,i�=k(1 + R̃i)
)

(Rk − r)
)

.

Candidates for the maximum must satisfy this critical point property. Here
is the key idea to the proof. Notice that possible solutions to these equations
are obtained when the conditional expectation is equal to zero, in which case one
observes

E

((
2Πn

i=1(1 + R̃i) + λn

)(
Πn

i=1,i�=k(1 + R̃i)
)

(Rk − r) |Hk−1

)
= 2

(
Πk−1

i=1 (1 + R̃i)2
)

E

((
1 + R̃k

)
Πn

i=k+1(1 + R̃i)2 (Rk − r) |Hk−1

)
+λnΠk−1

i=1 (1 + R̃i)E
((

Πn
i=k+1(1 + R̃i)

)
(Rk − r) |Hk−1

)
= 2

(
Πk−1

i=1 (1 + R̃i)2
)

×
[
E

(
((1 + r) + ωk (Rk − r)) Πn

i=k+1(1 + R̃i)2 (Rk − r) |Hk−1

)]
+λnΠk−1

i=1 (1 + R̃i)E
((

Πn
i=k+1(1 + R̃i)

)
(Rk − r) |Hk−1

)
= 0.

By isolating ωk, which is Hk−1-measurable, in the last expression we obtain,
unless Xk = 0 that is bankruptcy occurs,

ωk =
−2(1 + r)Πk−1

i=1 (1 + R̃i)E
[
(Rk − r)Πn

i=k+1(1 + R̃i)2|Hk−1

]
2Πk−1

i=1 (1 + R̃i)E
[
(Rk − r)2Πn

i=k+1(1 + R̃i)2|Hk−1

]
−

λnE

[
(Rk − r)Πn

i=k+1(1 + R̃i)|Hk−1

]
2Πk−1

i=1 (1 + R̃i)E
[
(Rk − r)2Πn

i=k+1(1 + R̃i)2|Hk−1

] .(4.4)

We will show by backward induction that these ωk are of the form (2.3). For
the base case k = n it is immediate.

Next, suppose that equation (2.3) is verified for k = l+1, l+2, ..., n . Accord-
ing to lemmas 2.4 and 2.5, the numerator of (4.4), with k = l, can be expressed
as

−2(1 + r)Πl−1
i=1(1 + R̃i)E

[
(Rl − r)E

(
Πn

i=l+1(1 + R̃i)2|Hl

)
|Hl−1

]
−λnE

[
(Rl − r)E

(
Πn

i=l+1(1 + R̃i)|Hl

)
|Hl−1

]
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= −2(1 + r)Πl−1
i=1(1 + R̃i)E

[
(Rl − r)

(
(1 + r)2(n−l)

E

[
1 −
∑n−1

i=l
τ i|Hl

])
|Hl−1

]
−2(1 + r)Πl−1

i=1(1 + R̃i)E

[
(Rl − r)

λ2
n

4Πl
i=1(1 + R̃i)2

E

[∑n−1

i=l
τ i|Hl

]
|Hl−1

]
−λnE

[
(Rl − r)

(
(1 + r)n−l

E

[
1 −
∑n−1

i=l
τ i|Hl

])
|Hl−1

]
+λnE

[
(Rl − r)

(
λn

2Πl
i=1(1 + R̃i)

E

[∑n−1

i=l
τ i|Hl

])
|Hl−1

]
= −2(1 + r)Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)
E

[
(Rl − r)

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
−λn (1 + r)n−l

E

[
(Rl − r)

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
−(1 + r)

λ2
n

2Πl−1
i=1(1 + R̃i)

E

[
(Rl − r)

(1 + R̃l)2

∑n−1

i=l
τ i|Hl−1

]

+
λ2

n

2Πl−1
i=1(1 + R̃i)

E

[
(Rl − r)

(1 + R̃l)

∑n−1

i=l
τ i|Hl−1

]

= −2Πl−1
i=1(1 + R̃i) (1 + r)2(n−l)

(
(1 + r) +

λn

2Πl−1
i=1(1 + R̃i) (1 + r)n−l

)
×E

[
(Rl − r)

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
+

λ2
n

2Πl−1
i=1(1 + R̃i)

ωlE

[
(Rl − r)2

(1 + R̃l)2

∑n−1

i=l
τ i|Hl−1

]
;

and the denominator as

2Πl−1
i=1(1 + R̃i)E

[
(Rl − r)2E

(
Πn

i=l+1(1 + R̃i)2|Hl

)
|Hl−1

]
= 2Πl−1

i=1(1 + R̃i)E
[
(Rl − r)2

(
(1 + r)2(n−l)

E

[
1 −
∑n−1

i=l
τ i|Hl

])
|Hl−1

]
+2Πl−1

i=1(1 + R̃i)E

[
(Rl − r)2

(
λ2

n

4Πl
i=1(1 + R̃i)2

E

[∑n−1

i=l
τ i|Hl

])
|Hl−1

]
= 2Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)
E

[
(Rl − r)2E

[
1 −
∑n−1

i=l
τ i|Hl

]
|Hl−1

]
+

λ2
n

2Πl−1
i=1(1 + R̃i)

E

[
(Rl − r)2

(1 + R̃l)2
E

[∑n−1

i=l
τ i|Hl

]
|Hl−1

]
= 2Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)
E

[
(Rl − r)2

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
+

λ2
n

2Πl−1
i=1(1 + R̃i)

E

[
(Rl − r)2

(1 + R̃l)2

∑n−1

i=l
τ i|Hl−1

]
.

Thus we get by substituting these formulas for the numerator and denomi-
nator into (4.4) :
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ωl

(
2Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)
E

[
(Rl − r)2

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

])
+ ωl

(
λ2

n

2Πl−1
i=1(1 + R̃i)

E

[
(Rl − r)2

(1 + R̃l)2

∑n−1

i=l
τ i|Hl−1

])

= −2Πl−1
i=1(1 + R̃i) (1 + r)2(n−l)

(
(1 + r) +

λn

2Πl−1
i=1(1 + R̃i) (1 + r)n−l

)
×E

[
(Rl − r)

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
+

λ2
n

2Πl−1
i=1(1 + R̃i)

ωlE

[
(Rl − r)2

(1 + R̃l)2

∑n−1

i=l
τ i|Hl−1

]

=⇒ ωl

(
2Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)
E

[
(Rl − r)2

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

])
= −2Πl−1

i=1(1 + R̃i) (1 + r)2(n−l)

(
(1 + r) +

λn

2Πl−1
i=1(1 + R̃i) (1 + r)n−l

)
×E

[
(Rl − r)

(
1 −
∑n−1

i=l
τ i

)
|Hl−1

]
which is exactly (4.4) with k = l. The proof by induction is now complete.

The vector {ωk} is then a critical point of the variational problem ; let us
show that this vector is indeed a global maximum.

According to the tower property,

1 + c = E[E
(
Πn

i=1(1 + R̃i)|H0

)
]

now using lemma 2.4, the constraint leads to

1 + c = E

[
(1 + r)n

E

[
1 −
∑n−1

i=0
τ i|H0

]
− λn

2
E

[∑n−1

i=0
τ i|H0

]]
= (1 + r)n

E

[
1 −
∑n−1

i=0
τ i

]
− λn

2
E

[∑n−1

i=0
τ i

]
.

Isolating λn we obtain (2.10).

Furthermore for these weights ωk we have, according to the tower property

VAR

(
Πn

i=1(1 + R̃i)
)

= E

[
Πn

i=1(1 + R̃i)
]2 − (E

[
Πn

i=1(1 + R̃i)
])2

= E

[
E

(
Πn

i=1(1 + R̃i)2|H0

)]
− (1 + c)2.

Now using lemma 2.5, we have
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VAR

(
Πn

i=1(1 + R̃i)
)

= E

(
(1 + r)2n

E

[
1 −
∑n−1

i=0
τ i|H0

]
+

λ2
n

4
E

[∑n−1

i=0
τ i|H0

])
− (1 + c)2

= (1 + r)2n
E

(
1 −
∑n−1

i=0
τ i

)
+

λ2
n

4
E

(∑n−1

i=0
τ i

)
− (1 + c)2

and substituting the value of λn we obtain

VAR

(
Πn

i=1(1 + R̃i)
)

= (1 + r)2n
E

(
1 −
∑n−1

i=0
τ i

)
+

⎡⎣(1 + r)n − (1 + c)

E

[∑n−1
i=0 τ i

] − (1 + r)n

⎤⎦2

E

(∑n−1

i=0
τ i

)
− (1 + c)2

= ((1 + r)n − (1 + c))2

⎡⎣ 1

E

[∑n−1
i=0 τ i

] − 1

⎤⎦ .

Finally we will show that the weights ωk associated with the portfolio P of
fixed mean E[Πn

i=1(1 + R̃P
i )] = 1 + c form the optimal solutions. Indeed we next

show that

COV

(
Πn

i=1(1 + R̃P
i ), Πn

i=1(1 + R̃Q
i )
)

= VAR

(
Πn

i=1(1 + R̃P
i )
)

holds for any other portfolio Q of same expected mean E[Πn
i=1(1+R̃Q

i )] = 1+c.

This will imply by Cauchy-Schwartz that

VAR

(
Πn

i=1(1 + R̃P
i )
)
≤
√

VAR

(
Πn

i=1(1 + R̃P
i )
)

VAR

(
Πn

i=1(1 + R̃Q
i )
)
.

First notice that using the tower property

COV

(
Πn

i=1(1 + R̃P
i ), Πn

i=1(1 + R̃Q
i )
)

= E

(
Πn

i=1(1 + R̃P
i )Πn

i=1(1 + R̃Q
i )
)
− E

(
Πn

i=1(1 + R̃P
i )
)

E

(
Πn

i=1(1 + R̃Q
i )
)

= E

(
Πn

i=1(1 + R̃P
i )(1 + R̃Q

i )
)
− (1 + c)2

= E

(
E

(
Πn

i=1(1 + R̃P
i )(1 + R̃Q

i )|H0

))
− (1 + c)2 .

Now applying lemma 2.6

COV

(
Πn

i=1(1 + R̃P
i ), Πn

i=1(1 + R̃Q
i )
)
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= E

(
(1 + r)2n−1

(
(1 + r) +

λn

2 (1 + r)n−1

)
E

(
1 −
∑n−1

i=0
τ i|H0

))
−λn

2
E

(
E

(
Πn

i=1(1 + R̃Q
i )|H0

))
− (1 + c)2

= (1 + r)2n
E

(
1 −
∑n−1

i=0
τ i

)
+

λn

2

(
(1 + r)n − (1 + c) − (1 + r)n

E

(∑n−1

i=0
τ i

))
− (1 + c)2 .

Then substituting the value of λn we have

COV

(
Πn

i=1(1 + R̃P
i ), Πn

i=1(1 + R̃Q
i )
)

= (1 + r)2n
E

(
1 −
∑n−1

i=0
τ i

)
+

⎛⎝(1 + r)n − (1 + c)

E

(∑n−1
i=0 τ i

) − (1 + r)n

⎞⎠
×
(
(1 + r)n − (1 + c) − (1 + r)n

E

(∑n−1

i=0
τ i

))
− (1 + c)2

= ((1 + r)n − (1 + c))2

⎡⎣ 1

E

(∑n−1
i=0 τ i

) − 1

⎤⎦
= VAR

(
Πn

i=1(1 + R̃P
i )
)

.

Therefore the strategy {ωk} gives us a global extremum.

4.7 Proof of corollary 2.10

First from remark 2.7, we deduce that

COV

(
Πn

i=k(1 + R̃P
i ), Πn

i=k(1 + R̃Q
i )|Hk−1

)
VAR

(
Πn

i=k(1 + R̃P
i )|Hk−1

)
=

(1 + r)n−k+1 − E

(
Πn

i=k(1 + R̃Q
i )|Hk−1

)
(

(1 + r)n−k+1 + λn

2Πk−1
i=1 (1+R̃P

i )

)
E

[∑n−1
i=k−1 τ i|Hk−1

] .
Thus there comes

E

(
Πn

i=k(1 + R̃Q
i )|Hk−1

)
− (1 + r)n−k+1
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= −
COV

(
Πn

i=k(1 + R̃P
i ), Πn

i=k(1 + R̃Q
i )|Hk−1

)
VAR

(
Πn

i=k(1 + R̃P
i )|Hk−1

)
×
(

(1 + r)n−k+1 +
λn

2Πk−1
i=1 (1 + R̃P

i )

)
E

[∑n−1

i=k−1
τ i|Hk−1

]
.

Using proposition 2.8 with k = 1, we finally have

E

(
Πn

i=1(1 + R̃Q
i )
)
− (1 + r)n

= −βn

(
(1 + r)n +

λn

2

)
E

[∑n−1

i=0
τ i

]
= −βn

⎛⎝(1 + r)n +

⎛⎝(1 + r)n − (1 + c)

E

[∑n−1
i=0 τ i

] − (1 + r)n

⎞⎠⎞⎠E

[∑n−1

i=0
τ i

]

= βn

⎛⎝(1 + c) − (1 + r)n

E

[∑n−1
i=0 τ i

]
⎞⎠E

[∑n−1

i=0
τ i

]
= βn ((1 + c) − (1 + r)n)

= βn

(
E

(
Πn

i=1(1 + R̃P
i )
)
− (1 + r)n

)
.

5 CONCLUSION

We have presented a multi-period mean variance analysis in portfolio selection
in the case where the investor’s portfolio consists of a single stock and bond and
where only fairly general conditions are imposed on these assets.

The closed-form solution to the multi-period mean-variance problem was con-
structed using optimization techniques in an abstract L2-space setting as well
as conditioning properties of random variables and backward induction. The
advantage of the proposed solution is that it is general enough to allow for the
incorporation of time dependence in modelling the rate of return, as well as de-
pendence, if one so wishes, on exogenous variables, such as economic factors that
might have the property to improve substantially our ability to predict future
rate of return. As a corollary, a security market line result in a multiperiod
capital asset pricing model was derived.

We have also exhibited several rich classes of models for the excess rate of re-
turn of a risky asset. These models were selected in order to satisfy certain basic
criteria, namely simplicity of use, computational efficiency and interpretability.
Many of them offer a simplified symbolic representation for the optimal values
of the parameters defining the solution to the multiperiod mean-variance portfo-
lio and have be seen to afford computational implementations with tractability
throughout the calculation process, thereby ensuring accurate results in real time,
even when parameter estimation is required.
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Upcoming investigations will include the extension of the multi-period mean-
variance portfolio solution to the case where the investor’s portfolio consists of
many risky assets and the interest rate varies in time. Also constrained multi-
period mean-variance should be considered, for example by prohibiting short
sales.
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