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Abstract

In this paper we generalize Yu’s strong invariance principle for asso-
ciated sequences to the multi-parameter case, under the assumption that
the covariance coefficient u(n) decays exponentially as n →∞. The main
tools will be the Berkes-Morrow multi-parameter blocking technique, the
Csörgő-Révész quantile transform method and the Bulinski rate of con-
vergence in the CLT for associated random fields.
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1 Introduction

Amongst various concepts introduced to measure the dependence between ran-
dom variables, association deserves a special place because of its numerous ap-
plications and its relatively easy mathematical manipulation. A finite collec-
tion (X1, . . . , Xm) of random variables is said to be associated (or satisfies
the FKG inequalities) if for any coordinatewise non-decreasing functions f, g
on Rm, cov(f(X1, . . . , Xm), g(X1, . . . , Xm)) ≥ 0, whenever the covariance is
defined. An infinite collection of random variables is associated if every finite
sub-collection is associated. This concept was introduced formally in [15], where
one can also find some of its most important properties.

In the past few decades, a lot of effort has been dedicated to prove limit
theorems for random fields (Xj)j∈Zd

+
of associated random variables. In the

case d = 1, this culminated with the strong invariance principle of Yu (see
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[22]), from which one can easily deduce all the other major limit theorems,
like the weak invariance principle and the functional law of iterated logarithm
(FLIL). The present paper was motivated by the need for a similar result in the
case d ≥ 2, which arises in the context of higher dimensional models, like the
percolation model of [11].

The first asymptotic result for zero-mean associated random fields was the
central limit theorem (CLT) proved by Newman in [17] for the (strongly) sta-
tionary case. This result says that if the finite susceptibility assumption holds,
i.e. σ2 :=

∑
i∈Zd ρ(i) < ∞, where ρ(j − k) := cov(Xj , Xk), then

n−d/2Sn
d−→ N(0, σ2) (1)

where Sn :=
∑

j1≤n · · ·
∑

jd≤n Xj . This was generalized in [11] to the non-
stationary case, under the assumption that u(n) → 0 as n →∞, where

u(n) := sup
j∈Zd

+

∑

k:‖j−k‖≥n

cov(Xj , Xk) (2)

and ‖ i ‖:= maxs=1,...,d |is|.
The weak invariance principle for (strongly) stationary associated random

fields was proved by Newman and Wright in the case d = 1 and d = 2 (see [18],
[19]), under the same finite susceptibility assumption. In [19], it was conjectured
that the same principle holds for d > 2. A partial solution to this problem was
given in [10] (in the stationary case) and in [16] (in the non-stationary case),
under the finite r-susceptibility assumption:

E|SN |2+r ≤ C[N ]1+r/2

where SN :=
∑

j≤N Xj and [N ] :=
∏d

s=1 Ns for N = (N1, . . . , Nd) ∈ Zd
+. (If

i, j ∈ Zd
+, we use the notations i ≤ j if is ≤ js,∀s = 1, . . . , d and i < j if

is < js, ∀s = 1, . . . , d.)
The conjecture was fully solved in [8], where it is proved that for a zero-mean

(weakly) stationary associated random field (Xj)j∈Zd
+

with uniformly bounded
moments of order s > 2 and a power decay rate for the covariance coefficient
u(n), we have

Wn(·) d−→ W (·) in D([0, 1]d) (3)

where Wn(t) := n−d/2
∑

j1≤nt1
· · ·∑jd≤ntd

Xj and W = (W (t))t∈[0,1]d is a d-
parameter Wiener process with variance σ2. (We note in passing that for d = 1,
generalizations to the non-stationary case and to case of vector-valued random
variables are given in [3], respectively [9].)

The FLIL for associated sequences was obtained in [13], under the finite
r-susceptibility assumption with r = 1 and a condition which requires that
E(S2

n)/n converges to 1 with a power decay rate.
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The strong invariance principle proved by Yu in 1996, strengthened and
unified all of these results in the case d = 1 and implied other asymptotic
fluctuation results, like the Chung’s type of FLIL for the maxima of partial
sums (see Theorems A-E of [20]). More precisely, Yu showed that if (Xj)j∈Z+ is
a sequence of associated random variables such that the moments of order s > 2
are uniformly bounded, the variances are bounded below away from 0 and the
covariance coefficient u(n) decays exponentially as n → ∞, then it is possible
to redefine the original sequence on a richer probability space together with a
standard Wiener process W = (W (t))t∈[0,∞) such that, for some ε > 0

Sn −W (σ2
n) = O(n1/2−ε) a.s.

where σ2
n := E(S2

n). As far as we know, there are no generalizations of this
principle to the case d ≥ 2. The purpose of the present paper is to fill this
gap and to provide a powerful approximation tool that can be used in higher
dimensions.

Unlike the case d = 1, the strong invariance principle for associated random
fields in higher dimensions holds only for points N ∈ Zd

+ which are not “too
close” to the coordinate axes. This is not at all surprising and a similar fact
happens for mixing random fields (see [1]). The reason for this phenomenon is
the irregular behavior of E(S2

N ) close to the coordinate planes.

We proceed now to introduce the notations that will be used throughout
this paper.

Let (Xj)j∈Zd
+

be a weakly stationary associated random field with zero mean

and ρ(j − k) := E(XjXk), ∀j, k ∈ Zd
+. Let u(n) be the covariance coefficient

defined by (2). Because of stationarity, we have u(n) =
∑

i∈Zd:‖i‖≥n ρ(i) for
every n ≥ 0. We will suppose that ρ(0) > 0 and σ2 := u(0) =

∑
i∈Zd ρ(i) < ∞.

For any finite subset V ⊆ Zd
+, we let |V | be the cardinality of V , S(V ) :=∑

j∈V Xj , σ2(V ) := E[S2(V )] and FV (x) := P (S(V )/σ(V ) ≤ x), x ∈ R. Note
that for any finite subset V ⊆ Zd

+

r(0) ≤ σ2(V )
|V | ≤ σ2 (4)

Most of the time we will work with “rectangles” V ⊆ Zd
+ of the form V :=

(a, b] =
∏d

s=1(as, bs] with as, bs ∈ Z+ ∪{0}, as ≤ bs; note that |V | = [b− a]. We
denote with A the class of all the subsets V of this form.

We will use the following conditions:

(C1) supj∈Zd
+

E|Xj |2+r+δ < ∞ for some r, δ > 0

(C2) u(n) = O(e−λn) for some λ > 0

(C2′) u(n) = O(n−ν) for some ν ≥ 0
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We recall that a d-parameter Wiener process W = {Wt; t ∈ [0,∞)d} with
variance σ2 is a Gaussian process with independent increments such that W (R)
has a N(0, σ2|R|)-distribution for any rectangle R (|R| denotes the volume of R).
Following [1], we put Gτ := ∩d

s=1{j ∈ Zd
+ : js ≥

∏
s′ 6=s jτ

s′} for any τ ∈ (0, 1).

Here is the main result of this paper.

Theorem 1.1 Let d ≥ 2, τ ∈ (0, 1) and (Xj)j∈Zd
+

be a weakly stationary asso-

ciated random field with zero mean and ρ(j−k) := E(XjXk) for any j, k ∈ Zd
+.

Suppose that ρ(0) > 0 and σ2 :=
∑

i∈Zd ρ(i) < ∞.
If (C1) and (C2) hold, then without changing its distribution we can re-

define the random field (Xj)j∈Zd
+

on a richer probability space together with a

d-parameter Wiener process {Wt; t ∈ [0,∞)d} with variance σ2 such that

SN −WN = O([N ]1/2−ε) a.s.

for N ∈ Gτ . Here ε is a positive constant depending on the field (Xj)j∈Zd
+
.

From the previous theorem one can easily deduce the following CLT:

[N ]−1/2SN
d−→ N(0, σ2)

when [N ] → ∞ and N ∈ Gτ for some τ ∈ (0, 1); this is more general than
(1) which was obtained only for N = (n, . . . , n) ∈ Zd

+. The non-functional
version of LIL obtained in [21] for any multi-parameter process with independent
increments (in particular for the Wiener process) allows us to conclude that

lim sup
[N ]→∞,N∈Gτ

(2[N ] log log[N ])−1/2SN = σ a.s.

We proceed now to the proof of Theorem 1.1. This is divided into several
steps which are explained in Section 2. The remaining sections contain the
developments that are needed to perform each step. To ease the exposition, we
placed in the Appendix the proofs of some preliminary lemmas.

2 Description of the Method

In this section we will indicated what are the main ingredients that are needed
for the proof of Theorem 1.1. More precisely, by blending the multi-parameter
blocking technique of Berkes and Morrow with the quantile transform technique
of Csörgő and Révész, we will be able to generalize to the multi-parameter case
the method introduced by Yu in [22].

Let α > β > 1 be integers to be chosen later and n0 := 0. For l ∈ Z+ let

nl :=
l∑

i=1

(iα + iβ) ∼ 1
α + 1

lα+1.
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For each k := (k1, . . . , kd) ∈ Zd
+, we put Nk := (nk1 , . . . , nkd

). For all k ∈ Zd
+

we have [Nk] ∼ (α + 1)−d[k]α+1.
Let Bk := (Nk−1, Nk] =

∏d
s=1(nks−1, nks

]. Note that |Bk| =
∏d

s=1(k
α
s +

kβ
s ) ≤ 2d[k]α. We define the “big” blocks Hk and the “small” blocks Ik by

Hk :=
d∏

s=1

(nks−1, nks−1 + kα
s ], Ik := Bk\Hk.

Note that |Hk| = [k]α and (2d − 1)[k]β ≤ |Ik| ≤ (2d − 1)[k]α. We denote
uk := S(Hk), λ2

k := σ2(Hk) and vk := S(Ik), τ2
k := σ2(Ik). By (4)

C[k]α ≤ λ2
k ≤ C[k]α, C[k]β ≤ τ2

k ≤ C[k]α. (5)

The sums over the big blocks will be used to generate a Gaussian approximating
sequence (ηk)k which will in turn be approximated by a Wiener process. In order
to do this, we will need an upper bound for the covariance of the sums over two
big blocks in terms of the distance between these blocks. The small blocks are
introduced simply to give some space between the big blocks, i.e. to ensure that
the distance between any two big blocks is non-zero.

H11 H21 H31

H12 H22 H31

H13 H23 H33

If the distribution function F̃k of uk/λk is continuous, then one could use di-
rectly the quantile transform method of Csörgő and Révész [12], to approximate
the variable uk/λk by a N(0, 1)-random variable. In general, this assumption
may not be satisfied, and therefore one needs to employ a “smoothing” tech-
nique (see [22]). Without changing its distribution, we redefine the random
field (uk)k∈Zd

+
on a rich enough probability space together with a random field

(wk)k∈Zd
+

of independent random variables such that wk is N(0, τ2
k )-distributed

and (uk)k and (wk)k are independent. Let

ξk := (uk + wk)/(λ2
k + τ2

k )1/2, k ∈ Zd
+

and Fk be the distribution function of ξk. By the CLT for associated random
fields, F̃k(x) → Φ(x) as k → ∞ and consequently Fk(x) → Φ(x) as k → ∞,
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where Φ(x) denotes the N(0, 1) distribution function. Therefore it is reasonable
to consider the following N(0, 1)-random variable

ηk := Φ−1(Fk(ξk))

as an approximation for ξk. Let ek :=
√

λ2
k + τ2

k (ξk − ηk).
In what follows we will adapt the method introduced by Berkes and Morrow

for mixing random fields to suit the special needs of an associated random field.
Following [1] (p. 25), we let τ ∈ (0, 1) be arbitrary, ρ := τ/8, L be the set of

all indices i corresponding to the “good” blocks Bi ⊆ Gρ, and H be the set of
all points in Zd

+ which fall in one of the good blocks. To each point N ∈ H we
associate the points N (1), . . . , N (d) which can be thought as the intersections of
the hyperplanes ns = Ns, s = 1, . . . , d with the “boundary” of the domain H;
their precise definition is: N

(s)
s′ = Ns′ , ∀s′ 6= s and

N (s)
s := min

n∈H;ns′=Ns′ ,s′ 6=s
ns.

Unlike the authors of [1], we raise a small technical point by noting that H
may not be a nice “L-shaped” region. This is why we consider the rectangles
Rk := (Mk, Nk] ⊆ H, where Mk := ((N (1)

k )1, . . . , (N
(d)
k )d). We note that Lk :=

{i : Bi ⊆ Rk} ⊆ L ∩ {i ≤ k}.
Nk

Mk

N
(1)
k

N
(2)
k

Rk

If V is a rectangle in Zd
+ and Ṽ is the rectangle in Rd

+ which corresponds to
V , then we make an abuse of notation by writing W (V ) instead of W (Ṽ ). This
convention will be used throughout this work and will occasionally apply to
finite unions of rectangles as well. We write

SN = (SN − SNk
) + S(Rk) + S((0, Nk]\Rk)

WN = (WN −WNk
) + W (Rk) + W ((0, Nk]\Rk)

and we use the following decomposition of S(Rk), based on the definitions of ξi

and ei and the fact that S(Bi) = ui + vi:

S(Rk) =
∑

i∈Lk

ei+
∑

i∈Lk

√
|Bi|

(√
λ2

i + τ2
i

|Bi| − σ

)
ηi+

∑

i∈Lk

σ
√
|Bi| ηi−

∑

i∈Lk

wi+
∑

i∈Lk

vi.

(6)
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In Section 3, we will show that all the sums in the above decomposition, except
the third one, can be made sufficiently small. The third sum will be treated
separately in Section 4 and will be approximated by W (Rk) =

∑
i∈Lk

W (Bi), via
a very powerful approximation result (Theorem 5 of [2]) and a carefully chosen
procedure for counting the indices in L. Finally, in Section 5 we will show
that the terms S((0, Nk]\Rk),W ((0, Nk]\Rk) can be made sufficiently small if
Nk ∈ Gτ , and the differences SN − SNk

,WN −WNk
are small if N ∈ Gρ. This

will conclude the proof of Theorem 1.1.

3 The “good” blocks

In this section we will show that all the sums in the decomposition (6) of SRk
,

except the third one, can be made sufficiently small.

In order to treat the first sum of this decomposition, we need to evaluate
the precision of the approximation of ξk by ηk. This will be given by the rate
of convergence in the CLT. In this paper we decided to use the rate obtained
by Bulinski in [7], under the assumption that the covariance coefficient u(n)
decays exponentially as n → ∞; under this assumption, this is the sharpest
rate of convergence in the CLT (see [4]). We note in passing that in the case
d = 1, a different rate of convergence in the CLT was developed and used in [22]
for associated sequences with a power decay rate of the covariance coefficient;
however, the exponential decay rate of u(n) was eventually needed in [22] for the
strong invariance principle. The problem of whether or not the strong invariance
principle continues to hold for associated random fields with a power decay rate
of covariances is still open even in the case d = 1, and we do not attempt to
tackle it here.

Throughout our work we will use the letter C to denote a generic positive
constant, independent of k.

Lemma 3.1 (Theorems 1, 2 of [7]) Suppose that (C1) and (C2) hold and
let s := 2 + r + δ. Then for any finite subset V ⊆ Zd

+

sup
x∈R

|FV (x)− Φ(x)| ≤
{

C|V | · (σ2(V ))−s/2 · (log(|V |+ 1))d(s−1) if s ≤ 3
C|V | · (σ2(V ))−3/2 · (log(|V |+ 1))d if s > 3

The next result is a generalization of Lemma 3.2 of [22] to the case d ≥ 2, in
the case of an exponential decay rate of u(n). Its proof is routine and is given
in the appendix.

Lemma 3.2 If (C1) and (C2) hold and 2r0r/(2 + r) < α/β < 2(1 + r)/(2 + r)
with r0 := max{1, (r + δ)−1}, then

sup
x∈R

|Fk(x)− Φ(x)| ≤ C[k]−rβ/(2+r) and sup
x∈R

|fk(x)− f(x)| ≤ C

where fk(x) is the density function of ξk and f(x) is the N(0, 1) density function.
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Using Lemma 3.2 and an argument that was introduced by Csörgő and
Révész (in the proof of Lemma 3 of [12]), we get the precision of the approxi-
mation of ξk by ηk.

Lemma 3.3 Under (C1) and (C2), we have

|Φ−1(Fk(x))− x| ≤ C[k]−{rβ/(2+r)−K2/2}

provided that |x| ≤ K
√

log[k], where 0 < K <
√

2rβ/(2 + r).

Next we give the precision of the approximation of ξk by ηk in terms of the
L2-distance. For this we will need the following lemma which gives an upper
bound for the moments of order 2 + r, generalizing an older result of Birkel in
the case d = 1 (see [5]). In particular, this lemma shows that (Xj)j∈Zd

+
has

finite r-susceptibility (as defined in the introduction).

Lemma 3.4 (Corrolary 1 of [6]) Suppose that (C1) and (C2′) hold with ν ≥
dν0, where ν0 := r(2 + r + δ)/(2δ) < (d− 2)−1 if d ≥ 3. Then for any V ∈ A

E|S(V )|2+r ≤ C|V |1+r/2.

Using (5), Lemma 3.3 and Lemma 3.4, and employing the same technique that
was used in the proof of Lemma 3.10 of [22], we get the following result.

Lemma 3.5 Under (C1) and (C2), we have

E[e2
k] ≤ C[k]α−ε0 , ∀k ∈ Zd

+

where ε0 := 2r2β/{(2 + r)(4 + 3r)}.
The next result will show us that the first sum in the decomposition (6) of

S(Rk) is small.

Lemma 3.6 Suppose that (C1) and (C2) hold and β > (1 + 2/r)(3 + 4/r).
Then there exists ε1 > 0 such that for every k ∈ Zd

+ with Lk 6= ∅
∑

i∈Lk

|ei| ≤ C[Nk]1/2−ε1 a.s.

Proof: Let q > 0 be such that α − ε0 + 1 < 2q < α − 1 (this is possible since
ε0 > 2 by our choice of β). By the Chebyshev’s inequality and Lemma 3.5, we
have

P (|ei| ≥ [i]q) ≤ [i]−{2q−(α−ε0)}, ∀i ∈ Zd
+.

By the Borel-Cantelli lemma, it follows that |ei| ≤ C[i]q, ∀i ∈ Zd
+ a.s. and

hence
∑

i∈Lk
|ei| ≤ C

∑
i∈Lk

[i]q ≤ C[k]q+1 ≤ C[k](α+1)/2−ε′1 ≤ C[Nk]1/2−ε1

a.s., where 0 < ε′1 < (α− 1)/2− q and ε1 := ε′1/(α + 1). 2

The proof of the following lemma is given in the appendix.
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Lemma 3.7 If (C2′) holds with d < ν < 2d then

σ2 − σ2(V )
|V | = O(|V |−δ0) (7)

where V is a finite union of rectangles in A and δ0 := ν/d− 1.

Remark: Relationship (7) is exactly Dabrowski’s condition for the law of the
iterated logarithm for associated sequences (see [13]).

Lemma 3.8 Suppose that (C2′) hold with d < nu < 2d and β > 3/δ0, where
δ0 := ν/d− 1. Then for every k ∈ Zd

+ with Lk 6= ∅

∑

i∈Lk

√
|Bi|

(
σ −

√
λ2

i + τ2
i

|Bi|

)
|ηi| ≤ C[Nk]1/2−α0 a.s.

where α0 := 1/{2(α + 1)}.

Proof: Note that ai := σ −
√

(λ2
i + τ2

i )/|Bi| > 0, by (4) and the association
property. Using (7), we have

a2
i ≤ σ2 − λ2

i + τ2
i

|Bi| =
|Hi|
|Bi|

(
σ2 − λ2

i

|Hi|
)

+
|Ii|
|Bi|

(
σ2 − τ2

i

|Ii|
)

≤ C(|Hi|−δ0 + |Ii|−δ0) ≤ C[i]−βδ0

and hence, by the Chebyshev’s inequality

P (
√
|Bi| aiηi ≥ [i]α/2−1) ≤ [i]−(α−2)|Bi|a2

i ≤ C[i]−(βδ0−2).

By the Borel-Cantelli lemma, it follows that
√
|Bi| aiηi ≤ C[i]α/2−1,∀i ∈ Zd

+

a.s. and hence
∑

i∈Lk

√
|Bi| aiηi ≤ C

∑
i∈Lk

[i]α/2−1 ≤ C[k]α/2 ≤ C[Nk]1/2−α0

a.s. since [k] ∼ (α + 1)d/(α+1)[Nk]1/(α+1). 2

The final result of this section shows that the last two sums in the decom-
position (6) of S(Rk) are small.

Lemma 3.9 If α− β > 2 + 4/ρ, then for every k ∈ Zd
+ with Lk 6= ∅ we have

∑

i∈Lk

|vi| ≤ C[Nk]1/2−α0 a.s. and
∑

i∈Lk

|wi| ≤ C[Nk]1/2−α0 a.s.

Proof: For the first inequality, we follow the lines of the proof of Lemma
8 of [1]. Note that Ii = ∪d

s=1Ii(s), where Ii(s) are disjoint rectangles with
|Ii(s)| ≤ Ciβs

∏
s′ 6=s iαs′ . Hence vi =

∑d
s=1 vi(s) with vi(s) :=

∑
j∈Ii(s)

Xj .
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By the Chebyshev’s inequality and (4)

P (|vi(s)| ≥ [i]α/2−1) ≤ C[i]−(α−2)|Ii(s)| ≤ Ci−(α−β−2)
s

∏

s′ 6=s

i2s′

≤ i−(α−β−2−2/ρ)
s ≤ C[i]−(α−β−2−2/ρ)ρ/2

for every i ∈ Lk. (As in the proof of the above-mentioned lemma, we used the
fact that i ∈ Lk implies that is ≥ C

∏
s′ 6=s iρs′ and consequently is ≥ C[i]ρ/2.)

Since (α− β − 2− 2/ρ)ρ/2 > 1, the result follows by the Borel-Cantelli lemma.
A similar argument applies to wi, since E(w2

i ) = τ2
i ≤ C|Ii| = C

∑d
s=1 |Ii(s)|.

2

4 The approximation theorem

In this section we will verify that the third sum in the decomposition (6) of S(Rk)
can be approximated by W (Rk), where W is a d-parameter Wiener process with
variance σ2. Some preliminary lemmas are needed.

The next result follows exactly as Theorem 2.1 of [22], using Lemma 3.2.

Lemma 4.1 If (C1) and (C2) hold and 2r0r/(2 + r) < α/β < 2(1 + r)/(2 + r)
with r0 := max{1, (r + δ)−1}, then for any 0 < θ < 1/2 and all i 6= j

E(ηiηj) ≤ C{([i][j])−α/2E(uiuj)}θ/(1+θ).

The next lemma gives a generalization of relationship (3.11) of [22] to the multi-
parameter case.

Lemma 4.2 If (C2) holds, then

E(uiuj) ≤ Ce−λMβ
i,j

where Mi,j := maxs:is 6=js(Ms(i, j)− 1) and Ms(i, j) := max(is, js), s = 1, . . . , d.

Proof: Let d := mink∈Hi d(k, Hj) be the distance between Hi and Hj , where
d(k, Hj) := mink′∈Hj ‖ k − k′ ‖. Then dk := d(k, Hj)− d ≥ 0 ∀k ∈ Hi,

E(uiuj) =
∑

k∈Hi

∑

k′∈Hj

E(XkXk′) ≤
∑

k∈Hi

u(d + dk) ≤ Ce−λd
∑

k∈Hi

e−λdk ≤ Ce−λd

and d = maxs=1,...,d mink∈Hi,k′∈Hj |ks − k′s| = maxs:is 6=js{mβ
s +

∑Ms−1
l=ms+1(l

α +
lβ)} ≥ Mβ

i,j , where ms = ms(i, j) := min(is, js) and Ms = Ms(i, j). 2

In order to prove our approximation theorem, we need to be able to “count”
properly the indices in L, i.e. to define a bijection ψ : Z+ → L satisfying certain
properties. This will be given by the following lemma, whose proof can be found
in the appendix.
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Lemma 4.3 There exists a bijection ψ : Z+ → L such that

l < m ⇒ ∃s∗ = s∗(l, m) such that ψ(l)s∗ ≤ ψ(m)s∗ (8)

∃m0 ∈ Z+ such that m ≤ C[ψ(m)]γ0 ∀m ≥ m0 (9)

for any γ0 > (1 + 1/ρ)(1− 1/d).

We are now able to prove the desired approximation theorem.

Theorem 4.4 Suppose that (C1) and (C2) hold, α > 3(1 + 1/ρ)(1 − 1/d),
β > (2/ρ)(1 + 1/ρ)(1 − 1/d) and 2r0r/(2 + r) < α/β < 2(1 + r)/(2 + r) with
r0 := max{1, (r + δ)−1}. Then without changing its distribution we can redefine
the random field (Xj)j∈Zd

+
on a rich enough probability space together with a

d-parameter Wiener process W = (Wt; t ∈ [0,∞)d) with variance σ2, such that
for every k ∈ Zd

+ with Lk 6= ∅

∑

i∈Lk

σ
√
|Bi|

∣∣∣∣∣ηi − W (Bi)
σ
√
|Bi|

∣∣∣∣∣ ≤ C[Nk]1/2−α0 a.s.

where α0 := 1/{2(1 + α)}.

Proof: Let 0 < θ < 1/2 be such that α{(1 + 1/ρ)(1 − 1/d)}−1 > 1 + 1/θ and
choose γ0 such that (1 + 1/ρ)(1 − 1/d) < γ0 < min{αθ/(1 + θ), βρ/2}. Let
ψ : Z+ → L be the bijection given by Lemma 4.3.

We will apply Theorem 5 of [2] to the sequence Ym := ηψ(m),m ∈ Z+ of
random variables and the probability distributions Gm := N(0, 1),m ∈ Z+ and
we will prove that for each m ∈ Z+,m ≥ 2 there exists some ρm > 0 such that

∣∣∣∣∣E exp

{
i

m∑

l=1

tlYl

}
− E exp

{
i

m−1∑

l=1

tlYl

}
E exp{itmYm}

∣∣∣∣∣ ≤ ρm (10)

for all t1, . . . , tm ∈ R with
∑m

l=1 t2l ≤ U2
m, where Um > 1032.

Then, by the above-mentioned theorem, without changing its distribution we
can redefine the sequence (Ym)m∈Z+ on a rich enough probability space together
with a sequence (Zm)m∈Z+ of independent N(0, 1)-random variables such that

P (|Ym − Zm| ≥ αm) ≤ αm, ∀m ∈ Z+

where αm ≤ C{U−1/4
m log Um + exp(−3U

1/2
m /16)m1/2U

1/4
m + ρ

1/2
m U

m+1/4
m }. We

will prove next that
αm ≤ Cm−2 for m large (11)

Then, by the Borel-Cantelli Lemma, |Ym − Zm| ≤ Cαm, ∀m ∈ Z+ a.s. Us-
ing a straightforward d-parameter generalization of Lemma 4 of [12], without

11



changing its distribution we can redefine the sequence (Zm)m∈Z+ on a richer
probability space together with a d-parameter Wiener process with variance σ2

such that Zm = W (Bψ(m))/(σ
√|Bψ(m)|), ∀m ∈ Z+. Hence

∣∣∣∣∣ηi − W (Bi)
σ
√
|Bi|

∣∣∣∣∣ ≤ Cαψ−1(i) ∀i ∈ L a.s.

and because |Bi| ≤ |Bk| ≤ C[k]α,∀i ∈ Lk and
∑

l∈Z+
αl < ∞, we have

∑

i∈Lk

σ
√
|Bi|

∣∣∣∣∣ηi − W (Bi)
σ
√
|Bi|

∣∣∣∣∣ ≤ C[k]α/2
∑

i∈Lk

αψ−1(i) ≤ C[k]α/2 ≤ C[Nk]1/2−α0 .

We proceed next to the verification of (10) and (11). By Lemma 4.1 and
Lemma 4.2, we have

E(YlYm) ≤ C
{

([ψ(l)][ψ(m)])−α/2
E(uψ(l)uψ(m))

}θ/(1+θ)

≤ C ([ψ(l)][ψ(m)])−αθ/(2+2θ)
e
−λθMβ

ψ(l),ψ(m)/(1+θ)

≤ C ([ψ(l)][ψ(m)])−αθ/(2+2θ)
e−λθ[ψ(m)]βρ/2/(1+θ)

(For the last inequality above we used (8) to obtain an s∗ = s∗(l, m) for which
Ms∗(ψ(l), ψ(m)) = ψ(m)s∗ ; since ψ(m) ∈ L, we have Mψ(l),ψ(m) ≥ ψ(m)s∗−1 ≥
C[ψ(m)]ρ/2.) By Lemma 2.2 of [14], the left-hand side of (10) is smaller than
2

∑m−1
l=1 |tltm| E(YlYm), which is in turn smaller than

Ce−λθ[ψ(m)]βρ/2/(1+θ)
m−1∑

l=1

2|tltm| ([ψ(l)][ψ(m)])−αθ/(2+2θ)

≤ Ce−λθ[ψ(m)]βρ/2/(1+θ){
m−1∑

l=1

t2l [ψ(l)]−αθ/(1+θ) + (m− 1)t2m[ψ(m)]−αθ/(1+θ)}

≤ Ce−λθ[ψ(m)]βρ/2/(1+θ)
m∑

l=1

t2l ≤ Ce−λθ[ψ(m)]βρ/2/(1+θ)U2
m := ρm

for m large enough (In the second inequality above, we used the fact that m ≤
C[ψ(m)]αθ/(1+θ), which follows from Lemma 4.3 by our choice of γ0.)

Finally, relationship (11) follows if we take Um := mq with q > 8. Clearly
U
−1/4
m log Um ≤ m−2 and exp(−3U

1/2
m /16)m1/2U

1/4
m ≤ exp(−2U

1/2
m /16) ≤ m−2

for m large enough. We have

ρ1/2
m Um+1/4

m = e−λθ[ψ(m)]βρ/2/(2+2θ)mq(m+5/4) ≤ m−2

since {2 + q(m + 5/4)} log m ≤ Cm1+ε ≤ C[ψ(m)](1+ε)γ0 ≤ C[ψ(m)]βρ/2, for m
large enough. This concludes the proof of the theorem. 2
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Remark: A similar argument can be used to give a simplified proof for
Theorem 2.5 of [22] (in the case d = 1). More precisely, one can check directly
the condition of Theorem 5 of [2] for the sequence (ηk)k≥1 of random variables
and the probability distributions Gk = N(0, 1), k ≥ 1 (as we did above). We
obtain in this manner a sequence (Zk)k≥1 of independent N(0, 1)-random vari-
ables with P (|ηk − Zk| ≥ αk) ≤ αk and αk ≤ Ck−2. Without changing its
distribution we can redefine the sequence (Zk)k≥1 on a richer probability space
together with a standard Brownian motion W = {Wt; t ∈ [0,∞)} such that
Zk = W (Ĥk)/

√
λ2

k + τ2
k , where Ĥk := (Vk−1, Vk] and Vk :=

∑k
i=1(λ

2
i + τ2

i ).
Since λ2

i + τ2
i ≤ Ciα ≤ Ckα for i ≤ k and

∑
i≥1 αi < ∞, this gives immediately

the desired approximation

k∑

i=1

√
λ2

i + τ2
i

∣∣∣∣∣ηi − W (Ĥi)√
λ2

i + τ2
i

∣∣∣∣∣ ≤ Ckα/2
k∑

i=1

αi ≤ CN
1/2−α0
k a.s.

5 The remaining terms

In this section we show that the terms S((0, Nk]\Rk),W ((0, Nk]\Rk), SN −
SNk

,WN −WNk
can be made sufficiently small if N ∈ Gτ .

Note that (0, Nk]\Rk = ∪d
s=1(0, N

(s)
k ]. If we let Ds(N) := maxn≤N(s) |Sn| and

D̂s(N) := maxn≤N(s) |Wn|, for each s = 1, . . . , d and N ∈ H, then

S((0, Nk]\Rk) ≤
d∑

s=1

2d−sDs(Nk), W ((0, Nk]\Rk) ≤
d∑

s=1

2d−sD̂s(Nk).

On the other hand (0, N ]\(0, Nk] = ∪JI
(J)
k , where I

(J)
k :=

∏
s∈J(nks , Ns] ×∏

s∈Jc(0, nks ] and the union is taken over all non-empty subsets J of {1, . . . , d}.
Let M

(J)
k := max |S(I(J)

k )| and M̂
(J)
k := sup |W (I(J)

k )|, where the maximum and
the supremum are taken over all N with nks < Ns ≤ nks+1, ∀s ∈ J . We have

max
Nk<N≤Nk+1

|SN − SNk
| ≤

∑

J

M
(J)
k , sup

Nk<N≤Nk+1

|WN −WNk
| ≤

∑

J

M̂
(J)
k .

We note in passing that the arguments that are valid for the terms depending
on the original random field (Xj)j∈Zd

+
can be applied to the terms depending

on the Wiener process W , since W (V ) =
∑

j∈V X̂j ,∀V ∈ A, where X̂j :=
W ((j − 1, j]) are independent N(0, σ2)-random variables. Clearly (X̂j)j∈Zd

+

is a weakly stationary associated random field with zero mean and covariance
coefficient û(n) = 0, ∀n ≥ 1.

13



Lemma 5.1 (a) Suppose that (C1) and (C2′) hold with ν ≥ dν0 and ν0 := r(2+
r+δ)/(2δ) < (d−2)−1 if d ≥ 3. Then there exists x0 such that ∀V ∈ A, ∀x ≥ x0

P (M(V ) ≥ x|V |1/2) ≤ Cx−(2+r)

where M(V ) := max{|S(Q)|; Q ⊆ V, Q ∈ A}.
(b) If (C1) and (C2) hold, then there exists γ > 0 such that ∀V ∈ A

P (M̃(V ) ≥ |V |1/2(log |V |)d+1) ≤ C|V |−γ

where M̃((a, b]) := max{|S(Q)|; Q = (a, c], a < c ≤ b}.
Proof: (a) Using Lemma 1 of [8], the Markov inequality and Lemma 3.4, we
have P (M(V ) ≥ x|V |1/2) ≤ 2P (|S(V )| ≥ x|V |1/2/2) ≤ Cx−(2+r)|V |−(1+r/2)

E|S(V )|2+r ≤ Cx−(2+r).
(b) This follows exactly as the second inequality of Lemma 7 of [1], using the
moment inequality given by Lemma 3.4 and the rate of convergence in the CLT
given by Lemma 3.1. This rate is sharper than the rate of Lemma 5 of [1]. To
see this, we use (4) and we note that supx∈R |FV (x) − Φ(x)| is either smaller
than C|V |−{s/2−1−εd(s−1)} if s ≤ 3, or smaller than C|V |−(1/2−εd) if s > 3; in
both cases a suitable choice of ε > 0 gives us the rate C|V |−t for some t ∈ (0, 1).
We also note that the requirement |V | ∈ Gτ is not needed. 2

The next result follows exactly as Lemma 6 of [1], using Lemma 5.1,(a).

Lemma 5.2 If α > 16/(3τ)− 1, then

max
s=1,...,d

Ds(Nk) ≤ C[Nk]1/2−ε a.s., max
s=1,...,d

D̂s(Nk) ≤ C[Nk]1/2−ε a.s.

for every Nk ∈ Gτ and 0 < ε < τ/32.

The following result follows exactly as Lemma 9 of [1], using Lemma 5.1,(b).

Lemma 5.3 Let γ be the constant given by Lemma 5.1,(b). If α > 2/γ, then

max
J

M
(J)
k ≤ C[Nk]1/2−ε a.s., max

J
M̂

(J)
k ≤ C[Nk]1/2−ε a.s.

for every Nk ∈ Gρ and 0 < ε < ρ/(8α).

A Appendix

Proof of Lemma 3.2: Using Lemma 3.1 for V = Hk and relationship (5), we
obtain that supx∈R |F̃k(x)−Φ(x)| is either smaller than C[k]−{αs/2−α−εd(s−1)}

if s ≤ 3, or smaller than C[k]−(α/2−εd) if s > 3. If α/β > 2r0r/(2 + r),
then a suitable choice of ε > 0 allows us to conclude that |F̃k(x) − Φ(x)| ≤
C[k]−rβ/(2+r), ∀x ∈ R. The first inequality follows by a change of variables.
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For the second inequality we use a technique similar to that used to prove
relationship (3.3) of [22]. Let ϕk(t) := E[exp(itξk)], ϕ̃k(t) := E[exp(ituk/λk)]
and ϕ(t) = exp(−t2/2). Since (λ2

k + τ2
k )/λ2

k ≤ C, we have for any T > 0

|fk(x)− f(x)| ≤ 1
2π

∫ ∞

−∞
|ϕk(t)− ϕ(t)|dt ≤ C

2π

∫ ∞

−∞
|ϕ̃k(t)− ϕ(t)|e−

τ2
k

t2

2λ2
k ds

≤ C

2π
· 2T [k]−rβ/(2+r) +

C

π

∫

|t|≥T

exp
{
− t2τ2

k

2λ2
k

}
dt

≤ C · T [k]−rβ/(2+r) +
C

T
· λ2

k

τ2
k

exp
{
−τ2

kT 2

2λ2
k

}

Since λ2
k/τ2

k ≤ C[k]α−β , the conclusion follows by choosing T = C[k]q with
α− β < q < rβ/(2 + r). Such a choice is possible if α/β < 2(1 + r)/(2 + r). 2

Proof of Lemma 3.7: First we claim that it is enough to prove (7) for
“squares”, i.e. for rectangles V = (m, n] ∈ A for which ns − ms = l, ∀s =
1, . . . , d. To see this we note that each rectangle V can be written as a fi-
nite union of disjoint squares: V = ∪p

i=1Vi. By the association property
σ2(V ) ≥ ∑p

i=1 σ2(Vi) and

σ2 − σ2(V )
|V | ≤ 1

|V |
p∑

i=1

|Vi|
(

σ2 − σ2(Vi)
|Vi|

)
≤ 1
|V |

p∑

i=1

C|Vi|1−δ0 ≤ C|V |−δ0

because 0 < δ0 < 1. Let us now prove relationship (7) for a square V = (m,n]
with ns −ms = l, ∀s = 1, . . . , d. Note that |V | = ld. By stationarity

σ2(V ) = |V | · r(0) +
∑

−(n−m−1)≤i≤n−m−1, i 6=0

d∏
s=1

(l − |is|) · r(i)

= |V | ·
∑

‖i‖≤l−1

r(i)−
∑

∅6=K⊆{1,...,d}
(−1)|K|−1

∑

‖i‖≤l−1, i 6=0

c(K, i) · r(i)

where c(K, i) := l|K
c| ·∏s∈K |is|. Since σ2−∑

‖i‖≤l−1 r(i) =
∑
‖i‖≥l r(i) = u(l)

and c(K, i) ≤ |V | if ‖ i ‖≤ l − 1, we have

σ2 − σ2(V )
|V | ≤ u(l) +

∑

∅6=K⊆{1,...,d},|K| odd

1
|V |

∑

‖i‖≤l−1, i 6=0

c(K, i) · r(i)

≤ C|V |−ν/d +
∑

∅6=K⊆{1,...,d},|K| odd

∑

‖i‖≤l−1, i 6=0

r(i)

≤ C|V |−ν/d + C|V |−ν/d+1

We used the fact that u(l) ≤ Cl−ν = C|V |−ν/d and r(i) ≤ u(‖ i ‖) ≤ u([i]1/d) ≤
C[i]−ν/d for any i ∈ Zd, where [i] =

∏
s:is 6=0 |is|. 2
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Proof of Lemma 4.3: The idea of the proof is based on the following simple
observation in the case d = 2. For each m ∈ Z+,m ≥ 2 with (m,m) ∈ L, there
exists a k∗1(m) ≥ m such that (k1,m), (m, k1) ∈ L for every m ≤ k1 ≤ k∗1(m).
Therefore, to each vertex (m,m) ∈ L one can associate an “L-shaped” region
L(m) consisting of 2{k∗1(m)−m}+1 points in L. In view of the desired property
(8), we will count consecutively the indices in L(2), L(3), etc. To verify property
(9), we note that k ∈ L(m) implies [k] ≥ m2.

We begin now the proof for arbitrary d ≥ 2. Let m ∈ Z+,m ≥ 2 be
such that (m, . . . , m) ∈ L and k = (k1, . . . , kd−1,m) ∈ L be such that ks >
m,∀s < d. This implies that all the vertices of Bk are in Gρ, and in particular
nm ≥ nρ

ks
,∀s < d. Since m is fixed, this cannot happen for infinitely many ks’s.

It follows that for each s = 1, . . . , d − 1, there exists a k∗s(m) ≥ m such that
ks ≤ k∗s(m). We note that k∗s(m) ≤ Cm1/ρ, if m is large enough. This argument
shows us that we have a maximum number of k∗(m) :=

∏d−1
s=1{k∗s(m)−m} points

of the form (k1, . . . , kd−1,m) in L, with ks > m, ∀s < d.
By symmetry, we can repeat this argument for each of the axes. We let

Ls(m) := {k = (k1, . . . , ks−1, m, ks, . . . , kd−1); m < ks′ ≤ k∗s′(m),∀s′ < d} for
every s = 1, . . . , d. The “L-shaped” region corresponding to the index m is

L(m) := ∪d
s=1Ls(m) ∪ {(m, . . . ,m)}.

Note that |L(m)| = dk∗(m) + 1 and that k ∈ L(m) implies [k] ≥ md. Clearly
L ⊆ ∪mL(m) (note that in the case d = 2, we actually have L = ∪mL(m)).
Next we count consecutively the indices in L(2), L(3), etc., i.e. we define a
bijection ϕ : Z+ → ∪mL(m) such that ∀z ∈ Z+

m−1∑

l=2

|L(l)| < z ≤
m∑

l=2

|L(l)| ⇒ ϕ(z) ∈ L(m).

The bijection ϕ clearly satisfies condition (8). To verify (9), we note that

z ≤ d

m∑

l=2

d−1∏
s=1

(k∗s(l)− l) + m ≤ d

d−1∏
s=1

m∑

l=2

(k∗s(l)− l) + m ≤ d

d−1∏
s=1

(
m∑

l=2

k∗s(l)

)
−

d(
m∑

l=2

l)d−1 + m ≤ d

d−1∏
s=1

(
m∑

l=2

k∗s(l)

)
≤ Cm(1+1/ρ)(d−1) ≤ Cmdγ0 ≤ C[ϕ(z)]γ0

for m large enough and γ0 > (1 + 1/ρ)(1 − 1/d) arbitrary. Finally, define the
bijection ψ : Z+ → L such that ψ−1(k) ≤ ϕ−1(k),∀k ∈ L. The result follows
since if z1, z2 ∈ Z+ are such that ψ(z1) = ϕ(z2), then z1 ≤ z2. 2
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