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Abstract

In this article we introduce the class of Markov jump random c.d.f.’s as
a sub-class of the Q-Markov prior distributions studied in (Balan, 2004)
and we prove that this sub-class is closed in the Bayesian sense.
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1 Introduction

In the infinite-dimensional (or nonparametric) Bayesian statistics, one starts
from the assumption that the distribution of a random sample should be re-
garded as a random process whose realizations are in fact cumulative distribu-
tion functions (c.d.f.’s), i.e. they start from 0, end at 1 and are non-decreasing
and right-continuous. This randomness assumption imposed on the distribution
may seem artificial but it has the practical merit of avoiding a parametric model
formulation and is appealing to theoreticians which can bring in tools from the
field of stochastic processes. This explains the relatively rapid growth of this
area which was introduced in (Ferguson, 1973) and already counts a very good
monograph (Ghosh, Ramamoorthi, 2003).

Random processes which enjoy the Markov property play a central role in
the theory of stochastic processes since they arise in a variety of applications
and have a well-defined analytical structure. A class of Markov processes which
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was extensively studied in the context of Bayesian nonparametric statistics (es-
pecially in survival analysis) is the class of neutral to the right processes F ,
which reduces to the class of Lévy processes Y without Gaussian components,
via the transformation Ft = 1− exp(−Yt). See (Doksum, 1974).

It was recently proved that if the prior information about a random c.d.f.
is that it “the Markov property holds”, then so is the up-dated information
after observing a sample from that distribution. Moreover, an integral Bayes
formula relates the analytical structure of this Markov random c.d.f. (given
by its transition system) to the posterior one. See (Balan, 2004) where one
considers an abstract sample space X instead of [0,∞) and a careful definition
of the Markov property on that space.

A quick review of the immense literature on Markov processes on the half-line
reveals that two distinct classes of processes have received considerable atten-
tion: the diffusions (which we exclude from our analysis since their trajectories
can not be non-decreasing) and the jump processes.

Markov jump processes represent a simple class of processes which were quite
well understood from the early days of probability theory and which enjoy nice
analytical and probabilistic properties. Our main reference for their study is
the original article by Feller in 1940 and its extensions given in Section 2.3.2 of
(Iosifescu and Tautu, 1973). These are two of the few references that treat the
inhomogenous case, which is of interest to us because a homogenous Markov
prior distribution leads to an inhomogenous Markov posterior distribution.

In the present article our focus of investigation will be the class of Markov
jump random c.d.f.’s. An object F of this class is characterized by the property
that once it reaches a value p ∈ [0, 1], it stays there for a small time interval
with a large probability and then jumps to another value q > p with a small
probability. In general, such a process will have almost all its trajectories step
functions and hence can be viewed as a discrete random c.d.f.

An appealing analytical feature of this class is the fact that the posterior
transition system can be written down in a closed formula. On the other hand,
from the statistical point of view, what makes a Markov jump prior distribution
more interesting than a neutral to the right prior is the fact the Markov jump
distribution is more sensitive to the values of the sample. This is a desirable
property in many survival analysis applications, where the estimate of the prob-
ability of surviving beyond time t should depend on all the values in the sample,
not only on those smaller than t, as it happens in the neutral to the right case.

The paper is organized as follows.
In Section 2, we introduce formally the Markov jump random c.d.f.’s and we

list some of their properties. In Section 3, we calculate the posterior distribution
of a Markov jump random c.d.f. in the case of a sample of size 1 and we prove
that it coincides with the distribution of another Markov jump random c.d.f. In
Section 4, we extend these results to a sample of arbitrary size. The appendix
contains the proofs of some technical lemmas.
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2 Markov-Jump C.D.F.’s

In this section we introduce the class of Markov jump random c.d.f.’s. From
the analytical point of view, these are right-continuous non-decreasing Markov
processes on [0, 1] whose transition system Q = (Qst)s≤t is differentiable with
respect to the time arguments s, t.

We begin our study by introducing formally a transition system Q on [0, 1]
as a family of functions Qst(z; Γ) defined for every s, t ∈ [0,∞) with s < t, for
every z ∈ [0, 1] and for every Borel set Γ in [0, 1], such that:

(i) Qst is a transition probability on [0, 1], i.e. Qst(z; ·) is a probability measure
on [0, 1] for every z and Qst(· ; Γ) is Borel measurable for every Γ

(ii) Chapman-Kolmogorov relationship holds, i.e. for every s < t < u and for
every z1,Γ ∫ 1

0

Qtu(z2; Γ)Qst(z1; dz2) = Qsu(z1; Γ)

We define Qss(z; Γ) = δz(Γ), where δa denotes the Dirac measure at a. A

A collection F = (Ft)t∈[0,∞) of random variables defined on a probability
space (Ω,F ,P) with values in [0, 1], is called a Markov process corresponding to
Q (or shortly Q-Markov) if for every s∗i ≤ s < t in [0,∞) and for every z∗i , z, Γ

P(Ft ∈ Γ|Fs∗1 = z∗1 , . . . , Fs∗
k

= z∗k, Fs = z) = P(Ft ∈ Γ|Fs = z) = Qst(z; Γ)

We return now to our interpretation of F as the common distribution func-
tion of a sample. We introduce the following terminology.

A random process F = (Ft)t≥0 with F (0) = 0 a.s., limt→∞ F (t) = 1 a.s.,
which is right-continuous a.s. and non-decreasing a.s. is called a random c.d.f.

The following two conditions are imposed to ensure that a Q-Markov process
has a version whose sample paths have the desired regularity properties:

(A) lim
ε↘0

Qs,s+ε(z; {z}) = lim
ε↘0

Qs−ε,s(z; {z}) = 1, for every z and for every s

(B) Qst(z; [0, z)) = 0 for every z and for every s < t

Proposition 2.1 (i) A Q-Markov process whose transition system satisfies (A)
is stochastically continuous. (ii) A separable Q-Markov process whose transition
system satisfies (B) is non-decreasing a.s. (iii) A separable Q-Markov process
whose transition system satisfies (A) and (B) has a right-continuous version.

Proof: (i) See the proof of Proposition 2.3.14 of (Iosifescu, Tautu, 1973).
(ii) We have P(Ft < Fs) = E [P(Ft < Fs|Fs)] and P(Ft < Fs|Fs = z) =
Qst(z; [0, z)) = 0 for every s < t. Hence Fs ≤ Ft a.s. for every s < t. By
separability, this implies Fs ≤ Ft for every s < t a.s.
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(iii) By (ii), the process has no discontinuities of the second kind. The result
follows by Proposition 2.1.17 of (Iosifescu, Tautu, 1973). 2

We also consider the following “infinitesimal” condition:

(C) For every s, z and Γ, the following two limits exist and are equal :

lim
ε↘0

Qs,s+ε(z; Γ)− δz(Γ)
ε

= lim
ε↘0

Qs−ε,s(z; Γ)− δz(Γ)
ε

:= Πs(z; Γ)

The family Π = (Πs)s≥0 is called the transition intensity corresponding
to Q. Note that Πs(z; ·) is countably additive for every z, Πs(· ; Γ) is Borel
measurable for every Γ, Πs(z; Γ) ≤ 0 if z ∈ Γ and Πs(z; Γ) ≥ 0 if z 6∈ Γ. We
have Πs(z; ∅) = Πs(z; [0, 1]) = 0 for every z.

We note that (C) implies (A), while (B) implies

(B′) Πs(z; [0, z)) = 0 for all z and s

From the probabilistic point of view, it is useful to express the intensity Π
as Πs(z; Γ) = λs(z)[πs(z; Γ)− δz(Γ)], where

λs(z) = −Πs(z; {z}) and πs(z; Γ) =
{

δz(Γ) if λs(z) = 0
Πs(z; Γ− {z})/λs(z) if λs(z) 6= 0

Under (C), we can conclude that for every t, z, Γ and for almost all s, the
partial derivative ∂Qst(z; Γ)/∂s exists and the backward equation holds, i.e.

∂

∂s
Qst(z; Γ) = −

∫ 1

0

Qst(z′; Γ)Πs(z; dz′). (1)

If in addition to (C) we suppose that the following condition holds:

(D) There exists C > 0 such that λs(z) ≤ C, for all s ≥ 0, z ∈ [0, 1]

then we can say that for every s, z, Γ and for almost all t, the partial derivative
∂Qst(z; Γ)/∂t exists and the forward equation holds, i.e.

∂

∂t
Qst(z; Γ) =

∫ 1

0

Πt(z′; Γ)Qst(z; dz′). (2)

The problem of recovering Q from the transition intensity Π was exten-
sively studied. It is known that if λs(z) and πs(z; Γ) are jointly measurable
in (s, z) and λs(z) is Lebesque integrable in s over any finite interval of [0,∞),
then there exists a transition system Qmin (possibly “substochastic”, i.e. with
Qmin

st (z; [0, 1]) ≤ 1) which satisfies (1), (2). If in addition we assume that

(D′) There exists nonnegative function s 7→ λ̃s, which is integrable over any
finite interval of [0,∞) such that λs(z) ≤ λ̃s, for all s ≥ 0, z ∈ [0, 1]
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then Qmin is stochastic and unique. Moreover, in this case a close formula is
available for expressing Qmin

st in terms of Π:

Qmin
st (z; Γ) = δz(Γ) +

∑

k≥1

Π(k)
st (z; Γ)

where Π(k)
st (z; Γ) =

∫ t

s

∫ t

s1
. . .

∫ t

sk−1
(Πs1 . . . Πsk

)(z; Γ)dsk . . . ds1 and Πs1 . . . Πsk

is defined recursively starting with (Πs1Πs2)(z; Γ) =
∫ 1

0
Πs2(z

′; Γ)Πs1(z; dz′).
From this formula we see that condition (B′) imposed on Π forces the corre-
sponding Qmin to satisfy (B).

In the present paper we will work under condition (D), which is stronger
than (D′). The reason for this will become transparent in Section 3. We note
that in the homogenous case, (D) and (D′) are equivalent.

The Markov process which corresponds to Qmin is also called “minimal” and
has a version whose sample paths are almost all step functions. In addition, we
will assume that this process starts from 0 and ends at 1.

Example 1: In the homogenous case, we have Πs = Π for all s, and hence
Qmin

t (z; Γ) = δz(Γ) +
∑

k≥1
tk

k! Π
k(z; Γ) := etΠ(z; Γ). The minimal process can

be constructed as
Ft = Zn if Tn ≤ t < Tn+1

where (Zn)n is a non-decreasing Markov chain with transition kernel π(z; dz′),
Tn =

∑n
i=1 τi and the conditional distribution of τn+1 given Z1, T1, . . . Zn, Tn

is exponential with rate λ(Zn). In particular, if λ(z) = λ for all z, then the
minimal process is called pseudo-Poisson (p. 322 of Feller, 1971) since its jump
times coincide with those of a homogenous Poisson process with rate λ.

Example 2: Let Y = (Yt)t≥0 be a compound Poisson process with rate
λ = (λs)s≥0 and jump distribution G concentrated on [0,∞), i.e. Y is a Lévy
process with log-characteristic function log E [eiuYt ] = λt

∫∞
0

(eiuy − 1)G(dy).
(We suppose that λ0 = 0 and λ∞ := lims→∞ λs < ∞.) This process has a
version whose sample paths are step functions, which can be constructed as

Yt =
n∑

i=1

Vi := Un if Tn ≤ t < Tn+1

where (Vi)i≥1 are iid with distribution G and (Tn)i≥1 are the jump times of
an independent Poisson process with rate λ. The neutral to the right process
corresponding to Y , defined by

Ft = 1− eUn := Zn if Tn ≤ t < Tn+1

is a Markov jump random c.d.f. with π(z; Γ) = G(− log{(1 − Γ)(1 − z)}) and
λs(z) = λs.
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3 The Posterior Distribution

In this this section we will derive the posterior distribution of the Markov-jump
random c.d.f. introduced in the previous section.

As it is the normal practice in the Bayesian nonparametric statistics, we
consider on the same probability space (Ω,F ,P) a random c.d.f. F = (Ft)t≥0

and a sample X = (X1, . . . , Xn) drawn from F , i.e. we assume that

P(X1 ≤ t1, . . . , Xn ≤ tn|F ) = Ft1 . . . Ftn
a.s. (3)

for every t1, . . . , tn ≥ 0. Once the existence of F is ensured, on a possible
different probability space (Ω′,F ′,P ′), the simultaneous construction of the pair
(F, X) is achieved on the obvious product space, using (3). Details are omitted
(see for instance p. 216 of Ferguson, 1973 or p. 299 of Balan, 2004).

The Bayesian interpretation is simple: we assume a nonparametric model
for which the unknown distribution F of the sample is supposed to be random.
Comparing with the classical Bayesian (parametric) statistics, in the nonpara-
metric case technical complications arise from the fact that F is a random
element of the space of all c.d.f.’s, on which one needs to place a probability
measure P ′. In the Markov jump case considered in the previous section, the
probability measure P ′ gives mass 1 to the class of discrete c.d.f.’s.

Let Q = (Qst)s≤t be a transition system satisfying (B) and (C). We will
suppose that the corresponding transition intensity Π satisfies (D) and hence
Q coincides with the minimal transition system Qmin. This assumption will
guarantee that for some M > 0

1−Qx,x+ε(z; {z})
ε

≤ M,
Qx,x+ε(z; [0, 1]− {z})

ε
≤ M (4)

for all z and ε (see the comment on p. 497 of Feller, 1940, regarding his rela-
tionship (22)). The following technical assumptions on Q are also needed:

(C1) For every s < t and for every z1, Qst(z1; {z ≥ z1; λt(z) = 0}) < 1.

(C2) For every s < t and for every z1, Γ2, lim
ε↘0

Qs+ε,t(z1; Γ2) = Qst(z1; Γ2)

uniformly in z1.

In what follows we let F = (Ft)t≥0 be a fixed Q-Markov random c.d.f. and
X a sample from F . From Theorem 3.4. of (Balan, 2004), we know that the
conditional distribution of F given X = x coincides with the distribution of a
Q(x)-Markov random c.d.f., for a posterior transition system Q(x).

Note: The above mentioned theorem was proved in the more general con-
text of “set-Markov” random probability measures P = (PA)A∈B on arbitrary
measurable spaces (X ,B). In particular, if we take X = [0,∞) (endowed with
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its Borel sets), then a set-Markov random probability measure P corresponds
to a Markov random c.d.f. F = (Ft)t≥0 defined by Ft := P[0,t].

We consider first the case of a sample of size 1. In this case we know that
Q

(x)
st = Qst for almost all x ≤ s. It is the purpose of this section to describe (up

to a set of measure zero) the posterior transition probability Q
(x)
st , for x > s.

While a complete description may not be possible in the case of a general Markov
random c.d.f., it turns out that a relatively simple description exists in the
Markov jump case.

Let 0 ≤ s < t be fixed. The key of determining the posterior transition
system Q(x) from the prior transition system Q is the following integral equation
(see (5) of Balan, 2004):

∫

(s,u]

Q
(x)
st (z1; Γ2)Q̃s(z1; dx) =

∫

Γ2

Q̃st(z1, z2; (s, u])Qst(z1; dz2) (5)

which holds for every u > s, for every Borel set Γ2 in [0, 1] and for µs-almost
all z1 in [0, 1] (the negligible set depending on s, t, u, Γ2). Here µs denotes the
law of Fs and

Q
(x)
st (z1; Γ2) = P(Ft ∈ Γ2|X = x, Fs = z1)

Q̃s(z1; (s, u]) = E [Fu − Fs|Fs = z1]
Q̃st(z1, z2; (s, u]) = E [Fu − Fs|Fs = z1, Ft = z2]

Due to its definition, the calculation of Q
(x)
st (z1; Γ2) can be specified only up to

a set of measure 0, with respect to the law νs(dx; dz1) of (X, Fs).

In order to evaluate the LHS of (5), we need to integrate with respect to the
measure Q̃s(z1; dx). For this we rewrite the forward equation (2) in its integral
form:

Qsu(z1; Γ′) = δz1(Γ
′) +

∫ u

s

∫ 1

0

Πx(w; Γ′)Qsx(z1; dw)dx

Since Q̃s(z1; (s, u]) =
∫ 1

0
(w − z1)Qsu(z1; dw), we obtain that

Q̃s(z1; (s, u]) =
∫ u

s

R(x)
s (z1)dx (6)

where

R(x)
s (z1) :=

∫ 1

0

∫ 1

0

(w′ − z1)Πx(w; dw′)Qsx(z1; dw).

Note that (6) holds for every u > s and for µs-almost all z1 (the negligible set
depending on u). We will assume that the negligible set does not depend on
u, by considering the union of all the negligible sets corresponding to rational
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numbers u. This implies that for µs-almost all z1, the measure Q̃s(z1; ·) has
density R

(·)
s (z1) on (s,∞) and hence

LHS of (5) =
∫ u

s

Q
(x)
st (z1; Γ2)R(x)

s (z1)dx. (7)

We begin now to evaluate the RHS of (5). The following calculations are
valid for any Q-Markov random c.d.f., not necessarily of Markov jump type.

We consider the following two two cases:

Case (i) s < u ≤ t

We have Q̃st(z1, z2; (s, u]) =
∫ 1

0
(w− z1)Qu|s,t(z1, z2; dw), where Qu|s,t(z1, z2; ·)

denotes the conditional distribution of Fu given Fs = z1, Ft = z2. For any Borel
sets Γ, Γ2 in [0, 1] and for µs-almost all z1,

P(Ft ∈ Γ2, Fu ∈ Γ|Fs = z1) =
∫

Γ2

Qu|s,t(z1, z2; Γ)Qst(z1; dz2)

=
∫

Γ

Qut(w; Γ2)Qsu(z1; dw)

where we used the Markov property for the second equality. Hence

RHS of (5) =
∫

Γ2

∫ 1

0

(w − z1)Qu|s,t(z1, z2; dw)Qst(z1; dz2) (8)

=
∫ 1

0

(w − z1)Qut(w; Γ2)Qsu(z1; dw) (9)

for any Borel set Γ2 and for µs-almost all z1 (the negligible set depends on Γ2).

Case (ii): u > t

By the Markov property Q̃st(z1, z2; (s, u]) =
∫ 1

0
(w − z1)Qtu(z2; dw) and hence

RHS of (5) =
∫

Γ2

∫ 1

0

(w − z1)Qtu(z2; dw)Qst(z1; dz2) (10)

Let us return now to the key relationship (5). We consider

F (u) :=

{ ∫ 1

0
(w − z1)Qut(w; Γ2)Qsu(z1; dw) if u ∈ (s, t]∫

Γ2

∫ 1

0
(w − z1)Qtu(z2; dw)Qst(z1; dz2) if u > t

From (7) and (9)-(10), we see that (5) is equivalent to
∫ u

s

Q
(x)
st (z1; Γ2)R(x)

s (z1)dx = F (u) for all u > s
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which implies, using a well-known property of the Lebesgue integral (e.g. The-
orem 8-5C of Burrill, 1972), that F is differentiable almost everywhere and

Q
(x)
st (z1; Γ2)R(x)

s (z1) = F ′(x) (11)

for almost all x > s. We claim that under (C1), R
(x)
s (z1) > 0 for every s, z1, x.

To see this, let π̃x(z; Γ) := λx(z)πs(z; Γ) and note that for any bounded mea-
surable function h

∫ 1

0

h(z′)Πx(z; dz′) =
∫ 1

z

(h(z′)− h(z))π̃x(z; dz′). (12)

Hence R
(x)
s (z1) =

∫ 1

z1

∫ 1

w
(w′ − w)π̃x(w; dw′)Qsx(z1; dw).

The next lemma gives an explicit formula for calculating the derivative of F .
Its proof is given in the appendix.

Lemma 3.1 Under (C2), the right derivative of F at x exists for all x > s, x 6=
t and is equal to R

(x)
st (z1; Γ2), where we define

R
(x)
st (z1; Γ2) :=

{ ∫ 1

0

∫ 1

0
(w′ − w)Qxt(w′; Γ2)Πx(w; dw′)Qsx(z1; dw) if x ∈ (s, t]∫

Γ2

∫ 1

0

∫ 1

0
(w′ − w)Πx(w; dw′)Qtx(z2; dw)Qst(z1; dz2) if x > t

Remark: Note that R
(x)
st (z1; Γ2) ≥ 0 since in view of (12) we may write

R
(x)
st (z1; Γ2) =

{ ∫ 1

z1

∫ 1

w
(w′ − w)Qxt(w′; Γ2)π̃x(w; dw′)Qsx(z1; dw) if x ∈ (s, t]∫

Γ2

∫ 1

z2

∫ 1

w
(w′ − w)π̃x(w; dw′)Qtx(z2; dw)Qst(z1; dz2) if x > t

From (11) and Lemma 3.1, we obtain our first main result.

Theorem 3.2 Let Q = (Qst)s≤t be a transition system satisfying (B), (C), (C1),
(C2) with transition intensity Π satisfying (D). Let F = (Ft)t≥0 be a Q-Markov
random c.d.f. and X a sample of size 1 from F . Then the posterior distribution
of F given X = x coincides with the distribution of a Q(x)-Markov random c.d.f.
such that for every s < t and for every Borel set Γ2 in [0, 1]

Q
(x)
st (z1; Γ2) =

{
Qst(z1; Γ2) for νs-a.a. (x, z1) ∈ [0, s]× [0, 1]
R

(x)
st (z1; Γ2)/R

(x)
s (z1) for νs-a.a. (x, z1) ∈ (s,∞)× [0, 1]

Remark: The Bayes estimate of F given X = x is

F̂t := E(Ft|X = x) =
∫ 1

0

z2Q
(x)
0t (0; dz2) =

1

R
(x)
0 (0)

∫ 1

0

z2R
(x)
0t (0; dz2)

which updates the prior estimate F0,t := E(Ft) =
∫ 1

0
z2Q0t(0; dz2).
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The next natural step is to investigate if the posterior transition system Q(x)

corresponds to a Markov jump random c.d.f., i.e. if it satisfies condition (C).
Technically speaking, such a question is inappropriate since : 1. the transition
probabilities Q

(x)
st (z1; ·) are not well defined for each x, z1; and 2. the Chapman-

Kolmogorov relationship does not hold for each x, z1 (see Definition 3.1 of Balan,
2004 of a “posterior” transition system).

In what follows we will show that for each x ≥ 0, it is possible to define a
genuine transition system Q̄(x) = (Q̄(x)

st )s≤t which satisfies condition (C) every-
where except at s = x and has the property that that for every s < t, for every
Borel set Γ2 in [0, 1] and for νs-almost all (x, z1)

Q
(x)
st (z1; Γ2) = Q̄

(x)
st (z1; Γ2)

This will circumvent the above-mentioned technical difficulty and will show that
the posterior distribution of F given X = x coincides with the distribution of a
Markov jump random c.d.f. which may have a fixed discontinuity at x.

Let x ≥ 0 be fixed. For every pair (s, t) with 0 ≤ s < t, for every z1 ∈ [0, 1]
and for every Borel set Γ2 in [0, 1], we define

Q̄
(x)
st (z1; Γ2) =

{
Qst(z1; Γ2) if x ≤ s

R
(x)
st (z1; Γ2)/R

(x)
s (z1) if x > s

Clearly each Q̄
(x)
st is a transition probability on [0, 1]. We define Q̄

(x)
ss (z; Γ) =

δz(Γ). The next proposition shows that the family Q̄(x) = (Q̄(x)
st )s≤t is a tran-

sition system, i.e. Chapman-Kolmogorov relationship holds.

Proposition 3.3 For every s < t < u, for every z1 ∈ [0, 1] and for every Γ3

∫ 1

0

Q̄
(x)
tu (z2; Γ3)Q̄

(x)
st (z1; dz2) = Q̄(x)

su (z1; Γ) (13)

Proof: We have 4 cases: (i) x ≤ s; (ii) s < x ≤ t; (iii) t < x ≤ u; (iv) x > u.
We will consider only case (iii); the other cases are similar. In this case

Q̄
(x)
st (z1; Γ2) =

1

R
(x)
s (z1)

∫

Γ2

∫

[0,1]2
(w′ − z1)Πx(w; dw′)Qtx(z2; dw)Qst(z1; dz2)

Q̄
(x)
tu (z2; Γ3) =

1

R
(x)
t (z2)

∫

[0,1]2
(v′ − v)Qxu(v′; Γ3)Πx(v; dv′)Qtx(z2; dv)

Q̄(x)
su (z2; Γ3) =

1

R
(x)
s (z1)

∫

[0,1]3
(v′−v)Qxu(v′; Γ3)Πx(v; dv′)Qtx(z2; dv)Qst(z1; dz2)
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and relationship (13) is equivalent to

∫ 1

0

1

R
(x)
t (z2)

∫

[0,1]2

{∫

[0,1]2
(w′ − z1)(v′ − v)Πx(w; dw′)Qtx(z2; dw)− (v′ − v)R(x)

t (z2)

}

Qxu(v′; Γ3)Πx(v; dv′)Qtx(z2; dv)Qst(z1; dz2) = 0

which is true because the inner parenthesis is equal to
∫
[0,1]2

[(w′− z1)(v′− v)−
(w′ − z2)(v′ − v)]Πx(w; dw′)Qtx(z2; dw) = (z2 − z1)

∫
[0,1]2

(v′ − v)Πx(w; dw′)
Qtx(z2; dw) = 0. 2

The next theorem shows that the transition system Q̄(x) satisfies the in-
finitesimal condition (C) everywhere except at s = x.

Theorem 3.4 Let Q = (Qst)s≤t be a transition system satisfying (B), (C), (C1),
(C2) with transition intensity Π satisfying (D). For every s 6= x and for every
z1,Γ2, the following two limits exist and are equal:

lim
ε↘0

Q̄
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)

ε
= lim

ε↘0

Q̄
(x)
s−ε,s(z1; Γ2)− δz1(Γ2)

ε
:= Π(x)

s (z1; Γ2)

For s = x and for every z1, Γ2, we have

δz1(Γ2) = lim
ε↘0

Q̄
(x)
x,x+ε(z1; Γ2) 6= lim

ε↘0
Q̄

(x)
x−ε,x(z1; Γ2) =

∫
Γ2

(w − z1)Πx(z1; dw)
∫ 1

0
(w − z1)Πx(z1; dw)

Proof: Case 1: s > x. We have Q̄
(x)
s,s+ε = Qs,s+ε for all ε and Q̄

(x)
s−ε,s = Qs−ε,s

for all ε < s− x. Hence the two limits exist and Π(x)
s = Πs.

Case 2: s < x. For ε < x− s, we have

Q̄
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)

ε
=

R
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)R

(x)
s (z1)

εR
(x)
s (z1)

Suppose that z1 6∈ Γ2. Then δz1(Γ2)R
(x)
s (z1) = 0 =

∫
Γ2

R
(x)
s+ε(z2)δz1(dz2) and

R
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)R

(x)
s (z1)

ε
=

∫

Γ2

fε(z2)νε(dz2)

where fε(z2) :=
∫
[0,1]2

(w′ − z1)Πx(w; dw′)Qs+ε,x(z2; dw) → R
(x)
s (z2) uniformly

in z2 and

νε(Γ′2) :=
Qs,s+ε(z1; Γ′2)− δz1(Γ

′
2)

ε
−→ Πs(z1; Γ′2) for all Γ′2

11



Note that νε are finite positive measures on Γ2. Using Lemma A.1 (Appendix),
we conclude that if z1 6∈ Γ2, then

Q̄
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)

ε
−→ 1

R
(x)
s (z1)

∫

Γ2

R(x)
s (z2)Πs(z1; dz2) := Π(x)

s (z1; Γ2)

If z1 ∈ Γ2, then δz1(Γ2)R
(x)
s (z1) = R

(x)
s (z1) and

Q̄
(x)
s,s+ε(z1; Γ2)− δz1(Γ2)

ε
= − 1

R
(x)
s (z1)

∫

Γc
2

fε(z2)νε(dz2) −→

− 1

R
(x)
s (z1)

∫

Γc
2

R(x)
s (z2)Πs(z1; dz2) := Π(x)

s (z1; Γ2)

A similar argument can be used for showing that the limit of ε−1[Q̄(x)
s−ε,s(z1; Γ2)−

δz1(Γ2)] exists and is equal to Π(x)
s (z1; Γ2).

For s = x, we have Q
(x)
x,x+ε(z1; Γ2) = Qx,x+ε(z1; Γ2) → δz1(Γ2) and

Q
(x)
x−ε,x(z1; Γ2) =

∫ 1

0

∫
Γ2

(w′ − w)Πx(w; dw′)Qx−ε,x(z1; dw)
∫ 1

0

∫ 1

0
(w′ − z1)Πx(w; dw′)Qx−ε,x(z1; dw)

→
∫
Γ2

(w − z1)Πx(z1; dw)
∫ 1

0
(w − z1)Πx(z1; dw)

since Qx−ε,x(z1; Γ) → δz1(Γ) for every Γ. 2

Remark: From the previous theorem and Proposition 2.1.(i), one can see
that a Q̄(x)-Markov process may not be stochastically continuous at x since

1 = lim
ε↘0

Q̄
(x)
x,x+ε(z; {z}) 6= lim

ε↘0
Q̄

(x)
x−ε,x(z; {z}) = 0

Let F̄ = (F̄t)t≥0 be a Q̄(x)-Markov random c.d.f., F̄x− = limε↘0 F̄x−ε the
left limit at x and J̄x = F̄x − F̄x− the jump at x. By expressing the condi-
tional expectation as a derivative (see Pfanzagl, 1979), one may guess what the
conditional distribution of J̄x given F̄x− should be:

P(J̄x ∈ Γ|F̄x− = z) = lim
δ→0

P(F̄x ∈ z + Γ, F̄x− ∈ [z − δ, z + δ])
P(F̄x− ∈ [z − δ, z + δ])

= lim
δ→0

lim
ε→0

P(F̄x ∈ z + Γ, F̄x−ε ∈ [z − δ, z + δ])
P(F̄x−ε ∈ [z − δ, z + δ])

= lim
ε→0

lim
δ→0

P(F̄x ∈ z + Γ, F̄x−ε ∈ [z − δ, z + δ])
P(F̄x−ε ∈ [z − δ, z + δ])

= lim
ε→0

Q̄
(x)
x−ε,x(z; z + Γ) =

∫
z+Γ

(w − z)Πx(z; dw)
∫ 1

0
(w − z)Πx(z; dw)

The above argument is not rigorous though since: 1. F̄x−ε → F̄x− a.s. does not
imply that P(F̄x−ε ∈ [z − δ, z + δ]) → P(F̄x− ∈ [z − δ, z + δ]) for every δ; 2.
the interchange of the two limits in δ and ε is not justified (one condition which
makes this interchange justified is that the limit in ε is uniform in δ).
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4 Arbitrary Sample Size

We will now extend the results of the previous section to a sample of size n.

Let s < t be fixed. From Lemma 3.3. of (Balan, 2004),we know that the
posterior transition probability Q

(x)
st does not depend on those xi’s that fall in

[0, s]. Without loss of generality we will assume that the first l observations
fall in [0, s], the next r − l observations fall in (s, t] and the remaining n − r
observations fall in (t,∞). Let Ã =

∏n
i=l+1(s, ui], with s < ul+1 < . . . ur ≤

t < ur+1 < . . . < un. We will denote with x = (xl+1, . . . , xn). Equation (5) of
(Balan, 2004) becomes:

∫

Ã

Q
(x)
st (z1; Γ2)Q̃s(z1; dx) =

∫

Γ2

Q̃st(z1, z2; Ã)Qst(z1; dz2) (14)

where Q
(x)
st (z1; Γ2) := P(Ft ∈ Γ2|X = x, Fs = z1), Q̃s(z1; Ã) := E [

∏n
i=l+1(Fui

−
Fs)|Fs = z1] and Q̃st(z1, z2; Ã) := E [

∏n
i=l+1(Fui − Fs)|Fs = z1, Ft = z2].

By applying repeatedly the forward equation (2) in its integral form, we
obtain that

Q̃s(z1; Ã) =
∫

[0,1]n−l

n∏

i=l+1

(wi − z1)Qun−1un(wn−1; dwn) . . . Qsul+1(z1; dwl+1)

=
∫ ul+1

s

∫ ul+2

xl+1

. . .

∫ un

xn−1

R
(x)
s (z1)dxn . . . dxl+1

where

R
(x)
s (z1) :=

∫

[0,1]2(n−l)

n∏

i=l+1

(w′i − z1)Πxn(wn; dw′n)Qxn−1xn(w′n−1; dwn) . . .

Πxl+1(wl+1; dw′l+1)Qsxl+1(z1; dwl+1).

Therefore

LHS of (14) =
∫ ul+1

s

∫ ul+2

xl+1

. . .

∫ un

xn−1

Q
(x)
st (z1; Γ2)R

(x)
s (z1)dxn . . . dxl+1

On the other hand, by using the Markov property one can see that

RHS of (14) =
∫

[0,1]r−l

∫

Γ2

∫

[0,1]n−r

n∏

i=l+1

(wi − z1)Qun−1un(wn−1; dwn) . . .

Qurt(wr; dz2) . . . Qsul+1(z1; dwl+1) := F (u)

13



From here we conclude that (14) is equivalent to
∫ ul+1

s

∫ ul+2

xl+1

. . .

∫ un

xn−1

Q
(x)
st (z1; Γ2)R

(x)
s (z1)dxn . . . dxl+1 = F (u)

for all s < ul+1 < . . . ur ≤ t < ur . . . < un. Using a fundamental property of the
multiple Lebesgue integral (see for instance Theorem 8-4C of Burrill, 1972) we
obtain that the Lebesgue-Stieltjes measure µF of F on (s,∞)n−l is differentiable
almost everywhere and

Q
(x)
st (z1; Γ2)R

(x)
s (z1) = µ′F (x) (15)

In particular

µ′F (x) = lim
ε↘0

µF ([x, x + ε])
|ε| (16)

where [x, x + ε] =
∏n

i=l+1[xi, xi + εi], |ε| =
∏n

i=l+1 εi and the limit is taken over
all ε = (εl+1, . . . , εn) such that (maxi εi)/(mini εi) → 1.

The next lemma shows us how to calculate this limit. Its proof is given in
the appendix.

Lemma 4.1 Under (C2), the limit in (16) exists for all x = (xl+1, . . . , xn) with
s < xl+1 ≤ . . . ≤ xr < t < xr+1 ≤ . . . ≤ xn and is equal to

R
(x)
st (z1; Γ2) =

∫

[0,1]2(r−l)

∫

Γ2

∫

[0,1]2(n−r)

n∏

i=l+1

(w′i − wi)Πxn(wn; dw′n)

Qxn−1xn(w′n−1; dwn) . . . Qxrt(w′r; dz2) . . . Πxl+1(wl+1; dw′l+1)Qsxl+1(z1; dwl+1)

From (15), (16) and Lemma 4.1, we obtain the following theorem.

Theorem 4.2 Under the assumptions of Theorem 3.2, if X = (X1, . . . , Xn) is
a sample of size n from F , then the posterior distribution of F given X = x
coincides with the distribution of a Q(x)-Markov random c.d.f. with

Q
(x)
st (z1; Γ2) =

R
(x)
st (z1; Γ2)

R
(x)
s (z1)

(17)

for νs-almost all (x, z1) ∈ [0, s]l × (s,∞)n−l × [0, 1] with s < xl+1 ≤ . . . ≤ xr ≤
t < xr+1 ≤ . . . ≤ xn.

Remark 1: From this theorem we see that the posterior distribution of an
increment Ft − Fs given Fs = z1 and X = x depends on the exact values of
all the observations larger than s, not only on those that lie in (s, t] and the
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number of observations larger than t, as it happens in the neutral to the right
case.

Remark 2: As in the case of a sample of size 1, let x = (x1, . . . , xn) be a fixed
vector with 0 ≤ x1 ≤ . . . ≤ xn. For each 0 ≤ s < t, depending on the position
of the pair (s, t) with respect to the xi’s, we define a transition probability Q̄st

according to formula (17). It is possible to prove that the family Q̄ = (Q̄st) is
transition system and that it satisfies the infinitesimal condition (C) everywhere
except at s = xi, i = 1, . . . , n, i.e. Q̄ corresponds to a Markov jump random
c.d.f. Details are omitted.

A Appendix

In this appendix section we will give the proof of Lemma 3.1. For this we need
the following lemma.

Lemma A.1 Let ν, νn, n ≥ 1 be finite signed measures on a measurable space
(X,X ) such that ν+

n (E) → ν+(E), ν−n (E) → ν−(E) for every E ∈ X and let
f, fn, n ≥ 1 be measurable functions on X such that fn(x) → f(x) uniformly in
x ∈ X. Suppose that f is bounded and |νn|(X) ≤ M for every n ≥ 1. Then

∫

X

fndνn →
∫

X

fdν

Proof: We have
∣∣∫

X
fndνn −

∫
X

fdν
∣∣ ≤ ∣∣∫

X
(fn − f)dνn

∣∣+∣∣∫
X

fdνn −
∫

X
fdν

∣∣.
The first integral is smaller than ε|νn|(X) ≤ εM for n large (see for instance
p. 258 of Royden, 1988). The second integral converges to 0 by a considering
separately the positive and negative parts and using a proposition stated as a
footnote on p. 204 of (Iosifescu, Tautu, 1973). 2

Proof of Lemma 3.1: We consider first the case x ∈ (s, t). The right derivative
of F at x is obtained as the limit (as ε goes to zero) of I + II where

I =
∫ 1

0

(w′ − z1)Qx+ε,t(w′; Γ2)
Qs,x+ε(z1; dw′)−Qsx(z1; dw′)

ε

II =
∫ 1

0

(w − z1)
Qx+ε,t(w; Γ2)−Qxt(w; Γ2)

ε
Qsx(z1; dw)

We treat first the term I. By the forward equation (2),

νε(Γ′) :=
Qs,x+ε(z1; Γ′)−Qsx(z1; Γ′)

ε
−→ ν(Γ′) :=

∫ 1

0

Πx(w; Γ′)Qsx(z1; dw)

for every Borel set Γ′ in [0, 1]. Note that

ν+
ε (Γ′) =

∫

Γ′

Qx,x+ε(w; Γ′)
ε

Qsx(z1; dw) −→ ν+(Γ′) :=
∫

Γ′
Πx(w; Γ′)Qsx(z1; dw)
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ν−ε (Γ′) =
∫

Γ′c

1−Qx,x+ε(w; Γ′)
ε

Qsx(z1; dw) −→ ν−(Γ′) := −
∫

Γ′c
Πx(w; Γ′)Qsx(z1; dw)

From (4) we obtain that |νε|([0, 1]) ≤ M for all ε. Using Lemma A.1 with
fε(w′) = (w′ − z1)Qx+ε,t(w′; Γ2), f(w′) = (w′ − z1)Qxt(w′; Γ2), we get

I −→
∫ 1

0

∫ 1

0

(w′ − z1)Qxt(w′; Γ2)Πx(w; dw′)Qsx(z1; dw)

We treat now the term II. By the backward equation (1), we have

Qx+ε,t(w; Γ2)−Qxt(w; Γ2)
ε

−→ −
∫ 1

0

Qxt(w′; Γ2)Πx(w; dw′)

and hence, by the bounded convergence theorem

II −→ −
∫ 1

0

∫ 1

0

(w − z1)Qxt(w′; Γ2)Πx(w; dw′)Qsx(z1; dw)

We conclude that the right-derivative of F at x exists and is equal to R
(x)
st (z1; Γ2).

We consider now the case x > t. The right derivative of F at x is obtained
as the limit of

∫

Γ2

∫ 1

0

(w′ − z1)
Qt,x+ε(z2; dw′)−Qtx(z2; dw′)

ε
Qst(z1; dz2)

as ε goes to 0. The argument is similar to previous one, using Lemma A.1 and the
bounded convergence theorem. Finally we note that

∫ 1

0
(w′ − z1)Πx(w; dw′) =∫ 1

0
(w′ − w)Πx(w; dw′) for every w, since Πx(w; [0, 1]) = 0. 2

Proof of Lemma 4.1: We consider for simplicity the case with only 2 obser-
vations greater that s, say s < x ≤ y < t. We have

F (x, y) =
∫ 1

0

∫ 1

0

(w − z1)(v − z1)Qyt(v; Γ2)Qxy(w; dv)Qsx(z1; dw)

µF ([x, x + ε]× [y, y + δ])
εδ

= ε−1

{
F (x + ε, y + δ)− F (x + ε, y)

δ
− F (x, y + δ)− F (x, y)

δ

}

As in the previous lemma, the limit of A(ε, δ) := δ−1[F (x+ε, y+δ)−F (x+ε, δ)]
as δ goes to 0, is obtained as the limit of two terms:

I =
∫ 1

0

∫ 1

0

(w′−z1)(v−z1)Qy+δ,t(v; Γ2)
Qx+ε,y+δ(w′; dv)−Qx+ε,y(w′; dv)

δ
Qs,x+ε(z1; dw′)

II =
∫ 1

0

∫ 1

0

(w−z1)(v−z1)
Qy+δ,t(v; Γ2)−Qyt(v; Γ2)

δ
Qx+ε,y(w; dv)Qs,x+ε(z1; dw)
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Hence

lim
δ↘0

A(ε, δ) =
∫

[0,1]3
(w−z1)(v′−z1)Qyt(v′; Γ2)Πy(v; dv′)Qx+ε,y(w; dv)Qs,x+ε(z1; dw) := B(ε)

lim
δ↘0

A(0, δ) =
∫

[0,1]3
(w−z1)(v′−z1)Qyt(v′; Γ2)Πy(v; dv′)Qxy(w; dv)Qsx(z1; dw) := B(0)

Using the same procedure we obtain that

lim
ε↘0

lim
δ↘0

µF ([x, x + ε]× [y, y + δ])
εδ

= lim
ε↘0

B(ε)−B(0)
ε

=
∫

[0,1]4
(w′ − w)(v′ − v)

Qyt(v′; Γ2)Πy(v; dv′)Qxy(w′; dv)Πx(w; dw′)Qsx(z1; dw) := R
(x,y)
st (z1; Γ2)

2
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