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Abstract

We examine various conditions under which a weighted weak law of large
numbers holds, in the context of noncommutative probability theory.
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1 Introduction

The weak law of large numbers (WLLN) proved by Kolmogorov is one of the
most beautiful results in classical probability theory. Quite recently, this funda-
mental limit theorem was extended by Bercovici and Pata (1996) to the general
context of noncommutative probability theory. The later context means replac-
ing the classical probability space (Ω,F , P ) by a noncommutative probability
space (A, ϕ), where A is a complex unital algebra and ϕ is a linear functional
on A satisfying φ(1) = 1.

The noncommutative WLLN of Bercovici and Pata was proved under the
same necessary and sufficient condition as Kolmogorov’s WLLN. Even more, in
a paper by the same authors (see Bercovici and Pata, 1999), it is proved that if
{Xk}k are i.i.d. random variables (in the classical sense), {Yk}k are free random
variables with the same common distribution as the Xk’s, and we let

Sn =
1

g(n)

n∑

k=1

Xk −Mn, Tn =
1

g(n)

n∑

k=1

Yk −Mn
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for arbitrary constants g(n) > 0 and Mn, then Sn converges in distribution if
and only if Tn converges in distribution (but the limits may not be the same).

However, the above result does not cover the case of independent (respec-
tively free) random variables Xk (respectively Yk), which are not identically
distributed, or are weighted by another constant h(k).

The purpose of this paper is to generalize the WLLN of Bercovici and Pata to
independent (non-identically distributed) random variables, normalized by arbi-
trary constants g(n) and h(k). As a by-product, we will obtain a necessary and
sufficient condition for the weighted WLLN, similar to the one of Kolmogorov.

The paper is organized as follows. In section 2 we prove the noncommutative
weighted WLLN under the same sufficient conditions as in the classical case,
and we identify a necessary condition as well. In section 3 we modify slightly the
result of section 2, so that the new sufficient conditions become easy to verify,
under some regularity and summability assumptions on g, h. The results in
section 3 are new in both classical and noncommutative settings. The appendix
contains the proof of a technical lemma.

We begin by introducing the terminology and notation specific to noncom-
mutative probability theory.

A W ∗-probability space is a pair (A, ϕ) be a probability space, where A is a
complex unital von Neumann subalgebra of some L(H) (the space of bounded
linear operators on a Hilbert space H) and ϕ is a normal faithful trace. A
random variable X is a self-adjoint operator affiliated with A, i.e. u(X) ∈ A for
any bounded Borel function u on R. The distribution of a random variable X
is a probability measure on R given by µX = ϕ ◦EX , where EX is the spectral
measure of X. We have

ϕ(u(X)) =
∫ ∞

−∞
u(t)dµX(t)

for every bounded Borel function u on R. A sequence of random variables
{Xn}n≥1 converges in distribution to a probability measure ν if µXn converges
to ν weakly. We refer the reader to p. 592 (Pata, 1996a) for the definition of
noncommutative independence, in particular freeness.

The analogue of the log-characteristic function associated to a probability
measure µ, is the Voiculescu transform φµ : Γα,β → C− defined implicitly by

Gµ(φµ(z) + z) =
1
z

where Γα,β = {z = x + iy ∈ C; y > β, |x| < αy} is a truncated cone with
α, β > 0, C− is the lower half plane and Gµ(z) =

∫∞
−∞ 1/(z − t)dµ(t). For any

constant c, we have φµcX
(z) = cφµX

(z/c).
If X, Y are free random variables with distributions µ, ν respectively, then

the distribution of X +Y is the free convolution µ⊕ν. We have φµ⊕ν = φµ +φν .
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For more details (e.g. continuity property), the reader is referred to Bercovici
and Pata (1996), Pata (1996a).

Throughout this paper, we let {g(n)}n be a nondecreasing sequence of pos-
itive numbers with g(n) → ∞, {h(n)}n a sequence of positive numbers and
f(n) = g(n)h(n). We denote by C a generic constant, which may be different
from line to line.

2 The First Result

Our first theorem is the noncommutative analogue of the classical weighted
WLLN (see Theorem 5.2.3 of Chung, 2001). Its proof is inspired by that of
Theorem 2.2 (Pata, 1996a).

Theorem 2.1 Let {Xk}k≥1 be a sequence of independent random variables in
a W ∗-probability space (A, ϕ), and denote by µk the distribution of Xk. If

(C1)
n∑

k=1

µk({t : |t| > f(n)}) → 0

(C2)
1

g(n)2

n∑

k=1

1
h(k)2

∫ f(n)

−f(n)

t2dµk(t) → 0

then there exist real constants {Mn}n such that the sequence

1
g(n)

n∑

k=1

Xk

h(k)
−Mn

converges in distribution to the Dirac measure δ0 at zero. Moreover, the con-
stants Mn can be chosen to be

Mn =
1

g(n)

n∑

k=1

1
h(k)

∫ f(n)

−f(n)

t dµk(t).

Proof: For every n ≥ 1, let Sn = g(n)−1
∑n

k=1 h(k)−1Xk,

X∗
k,n = XkEXk

([−f(n), f(n)]) and mk,n =
∫ f(n)

−f(n)

tdµk(t) for k ≤ n,

S∗n =
1

g(n)

n∑

k=1

X∗
k,n

h(k)
and Mn =

1
g(n)

n∑

k=1

mk,n

h(k)
.

We want to show that Sn −Mn converges in distribution to δ0, i.e.

µSn−Mn(∆ε) → 0 ∀ε > 0 (1)
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where ∆ε = {x; |x| > ε}. By Proposition 3.1 (Pata, 1996a),

µSn−Mn(∆ε) ≤ µSn−S∗n(∆0) + µS∗n−Mn
(∆ε).

Using repeatedly Proposition 3.1 (Pata, 1996a) and condition (C1), we get

µSn−S∗n(∆0) ≤
n∑

k=1

µh(k)−1(Xk−X∗
k,n

)(∆0) =
n∑

k=1

µXk−X∗
k,n

(∆0)

=
n∑

k=1

µk(∆f(n)) → 0.

Using Chebyshev’s inequality, the independence of Xk’s and condition (C2),

µS∗n−Mn(∆ε) ≤ 1
ε2

ϕ((S∗n −Mn)2) ≤ 1
ε2g(n)2

n∑

k=1

1
h(k)2

ϕ((Xk,n)2) =

1
ε2g(n)2

n∑

k=1

1
h(k)2

∫ f(n)

−f(n)

t2dµk(t) → 0

This concludes the proof of (1). 2

When the random variables {Xk}k≥1 have a common distribution µ, condi-
tion (C1) can be written as:

(C) n µ({x; |x| > f(n)}) = o(1) as n →∞.

In this case, a result on p. 192 of Adler and Rosalsky (1991) says that (C)
implies (C2) if either one of the following sets of conditions hold:

(F1) f ↑, f(n)
n

↓, A(n) :=
1

g(n)2

n∑

k=1

1
h(k)2

= o(1),
n∑

k=1

f(k)2

k2
= O(A−1

n )

(F2)
f(n)

n
↑,

n∑

k=1

1
h(k)2

= O

(
n

h(n)2

)

(Here the symbols un ↑ or un ↓ are used to indicate that the sequence {un}n is
nondecreasing, respectively nonincreasing.)

Examples: 1. Let g(n) = na, a ≥ 0 and h(n) = nb, b > 1/2. We see that
(F1), respectively (F2) hold, depending on whether a + b < 1 or a + b ≥ 1. (In
section 3, we will improve this example by requiring only a, b ≥ 0; a + b > 1/2.)

2. If h is nonincreasing and f(n)/n is nondecreasing, then (F2) is satisfied.
As an example we may take g(n) = nρ, ρ > 1 and h(n) = 1/ log n.
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The next theorem says that if the random variables are free and we impose

(F3) inf
n

h(n) > 0

then (C) is also necessary.

Theorem 2.2 Suppose that either (F1), (F3) or (F2), (F3) hold. Let {Xk}k≥1

be a sequence of free identically distributed random variables with common dis-
tribution µ. The following are equivalent:

(i) There exist real constants Mn such that the sequence

1
g(n)

n∑

k=1

Xk

h(k)
−Mn

converges in distribution to the Dirac measure δ0 at zero.
(ii) The measure µ satisfies (C).

Moreover, if (ii) is satisfied the constants Mn in (i) can be chosen as in Theorem
2.1 (with µk = µ).

Proof: It remains to prove that (i) ⇒ (ii).
For every n ≥ 1, let νn be the distribution of

∑n
k=1 Xk/dk,n −Mn, where

dk,n = g(n)h(k) for k ≤ n. By Proposition 1 (Bercovici and Pata, 1996), (i)
implies that

lim
y→∞

φνn(iy)
y

= 0 uniformly in n. (2)

Note that φνn(iy) =
∑n

k=1 φµ(iydk,n)/dk,n −Mn and

=φνn(iy)
y

=
n∑

k=1

=φµ(iydk,n)
ydk,n

. (3)

Using Proposition 2.5 (Bercovici and Pata, 1999), we have

φµ(z) = z2

[
Gµ(z)− 1

z

]
(1 + v(z))

where v(z) → 0 as |z| → ∞ nontangentially. Since φµ : Γα,β → C−, we have

=φµ(iy) = −y2=
[
Gµ(iy)− 1

iy

]
(1 + v(iy)) ≤ 0, ∀y ≥ β (4)

which implies =[Gµ(iy)− 1/(iy)](1 + v(iy)) ≥ 0 for all y ≥ β.
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Since g(n) →∞ and (F3) holds, there exists N such that dk,n ≥ mg(n) ≥ β
for all n ≥ N, k ≤ n. From (3) and(4), we get

=φµ(iy)
y

= −y

n∑

k=1

dk,n=
[
Gµ(iydk,n)− 1

iydk,n

]
(1 + v(iydk,n))

≤ −yf(n)=
[
Gµ(iyf(n))− 1

iyf(n)

]
(1 + v(iyf(n))) ≤ 0.

From (2), we get

lim
y→∞

yf(n)=
[
Gµ(iyf(n))− 1

iyf(n)

]
(1 + v(iyf(n))) = 0 uniformly in n.

Since f(n) ≥ mg(1) for all n and |v(iyf(n))| ≤ 1/2 for n, y large enough, we
conclude that

lim
y→∞

=
[
Gµ(iyf(n))− 1

iyf(n)

]
= 0 uniformly in n

which implies

lim
y→∞

=
[
Gµ(iy)− 1

iy

]
= 0.

The conclusion follows immediately since

=
[
Gµ(iy)− 1

iy

]
=

∫ ∞

−∞

( −y

t2 + y2
+

1
y

)
dµ(t) ≥ 1

2
y µ({t; |t| ≥ f(y)}).

2

3 The Second Result

The following result is obtained by applying Theorem 2.1 to the random vari-
ables X̃k = Xk/h(k) and the sequences g̃(n) = g(n), h̃(n) = 1. Note that in
this case X̃k has distribution µ̃k defined by µ̃k(B) := µk(h(k)B).

Theorem 3.1 Let {Xk}k≥1 be a sequence of independent random variables in
a W ∗-probability space, and denote with µk the distribution of Xk. If

(C̃1)
n∑

k=1

µk({t; |t| > g(n)h(k)}) → 0

(C̃2)
1

g(n)2

n∑

k=1

1
h(k)2

∫ g(n)h(k)

−g(n)h(k)

t2dµk(t) → 0
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then there exist real constants {M̃n}n such that the sequence

1
g(n)

n∑

k=1

1
h(k)

Xk − M̃n

converges in distribution to the Dirac measure δ0 at zero. Moreover, the con-
stants M̃n can be chosen to be

M̃n =
1

g(n)

n∑

k=1

1
h(k)

∫ g(n)h(k)

−g(n)h(k)

t dµk(t).

In what follows we will suppose that Xk’s have common distribution µ, g
can be extended to a positive nondecreasing function on (0,∞) and h can be
extended to a positive function on (0,∞). Let f(x) := g(x)h(x).

The following assumptions on g, h will be used, in addition to (F3):

(F4) the inverse f−1 of f exists and satisfies lim
t→∞

f−1(t) = ∞

(F5)
n∑

k=1

1
f−1(g(n)h(k))

= O(1)

(F6) f is regularly varying at ∞ with index ρ > 1/2, i.e. for every λ > 0
lim

x→∞
f(λx)/f(x) = λρ

Examples: 1. Let g(x) = xa, h(x) = xb with a, b ≥ 0, a + b > 1/2. In this case
f−1(x) = x1/(a+b) and (F3)-(F6) hold: in the case of (F5) we have

n∑

k=1

(nakb)−1/(a+b) = n−a/(a+b)
n∑

k=1

k−b/(a+b) ≤ n−a/(a+b) · Cn1−b/(a+b) = C.

2. If h is nonincreasing and f is nondecreasing, then (F5) holds:

n∑

k=1

1
f−1(g(n)h(k))

≤
n∑

k=1

1
f−1(f(n))

=
n∑

k=1

1
n

= 1.

As an example we may take g(x) = xρ, ρ > 1 and h(x) = (x+1)/x. In this case
f(x) = xρ−1(x + 1) is strictly increasing and (F3)-(F6) hold.

We consider also a stronger form of condition (C):

(C̃) τ(t) := f−1(t) µ({x; |x| > t}) = o(1) as t →∞.

Proposition 3.2 Under (F3)-(F5), (C̃) implies (C̃1).
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Proof: Let dk,n := g(n)h(k) for k ≤ n. Let ε > 0 be arbitrary. By (C̃), there
exists T = Tε such that τ(t) < ε for all t ≥ T . Since g(n) → ∞ and (F3)
holds, there exists N = Nε such that dk,n ≥ mg(n) ≥ T for all n ≥ N, k ≤ n.
Therefore, for every n ≥ N

n∑

k=1

µ({x; |x| > dk,n}) =
n∑

k=1

1
f−1(dk,n)

τ(dk,n) ≤ ε

n∑

k=1

1
f−1(dk,n)

≤ Cε,

where we used (F5) for the last inequality. This concludes the proof. 2

The following lemma generalizes Lemma 4.3.(iii) (Bercovici and Pata, 1996)
to the case of invertible, regularly varying functions f . Its proof is given in the
appendix.

Lemma 3.3 Under (F4) and (F6), if (C̃) holds, then for every k ≥ 2,

vk(y) :=
f−1(y)

yk

∫ y

−y

|t|kdµ(t) = o(1) as y →∞.

Using this lemma, we obtain the following result.

Proposition 3.4 Under (F3)-(F6), (C̃) implies (C̃2).

Proof: Let dk,n := g(n)h(k) for k ≤ n. Let ε > 0 be arbitrary. By Lemma 3.3,
there exists Y = Yε such that v2(y) ≤ ε,∀y ≥ Y . Since g(n) → ∞ and (F3)
holds, there exists N = Nε such that dk,n > Y for all n ≥ N, k ≤ n. Hence,
using (F5) we have

n∑

k=1

1
d2

k,n

∫ dk,n

−dk,n

t2dµ(t) =
n∑

k=1

v2(dk,n)
f−1(dk,n)

≤ ε

n∑

k=1

1
f−1(dk,n)

≤ Cε

for all n ≥ N , which concludes the proof. 2

The next theorem says that under (F3) − (F6), (C̃) is a necessary and
sufficient condition for the weighted WLLN. Sufficiency is obtained immediately
from Theorem 3.1 and Propositions 3.2, 3.4; necessity follows exactly as in
Theorem 2.2.

Theorem 3.5 Suppose that (F3)-(F6) hold. Let {Xk}k≥1 be a sequence of
free identically distributed random variables with common distribution µ. The
following are equivalent:

(i) There exist real constants {M̃n}n such that the sequence

1
g(n)

n∑

k=1

1
h(k)

Xk − M̃n
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converges in distribution to the Dirac measure δ0 at zero.
(ii) The measure µ satisfies (C̃).

Moreover, if (ii) is satisfied the constants M̃n in (i) can be chosen as in Theorem
3.1 (with µk = µ).

Concluding Remarks: (a) Theorems 2.2 and 3.5 extend several results in
noncommutative probability theory, such as Kolmogorov WLLN (cf. Bercovici
and Pata, 1996) and Marcinkiewicz WLLN (cf. Pata, 1996a), and in addition
give new such WLLN’s considering for instance regularly varying weights.

(b) Propositions 3.2, 3.4 show that under (F3)−(F6), (C̃) is also a sufficient
condition for the weighted WLLN in the classical sense, which seems to be a
new result. See Theorem 1.3 (Gut, 2004) which treats the case h(n) = 1.

(c) In view of the the central limit theorem for free random variables (cf.
Pata, 1996b), the index ρ in (F6) has to be strictly larger than 1/2.

(d) The case of logarithmic averages (i.e. g(n) = log n, h(n) = n) is not
covered either by conditions (F1)− (F2), nor by conditions (F3)− (F6). In the
classical theory, condition

∫ ∞

−∞
f−1(t)dµ(t) < ∞, f(t) := t log t

is known to be necessary and sufficient for the strong LLN (see Jaite, 2004).
However, even in this setting, it is not clear whether the WLLN for logarithmic
averages holds, under (C̃) alone.

A Appendix

Proof of Lemma 3.3: Using integration by parts, we have
∫ y

−y

|t|kdµ(t) = −ykµ({x; |x| > y}) + k

∫ y

0

tk−1µ({x; |x| > t})dt.

The result will follow once we prove that

f−1(y)
yk

∫ y

0

tk−1µ(x; |x| > t)dt = o(1) as y →∞. (5)

Note that f−1 is regularly varying at ∞ with index 1/ρ. Using Kara-
mata’s Representation Theorem (see Theorems 1.3.1, 1.4.1, Bingham, Goldie
and Teugels, 1987), respectively Potter’s Theorem (see Theorem 1.5.6.(iii), Bing-
ham, Goldie and Teugels, 1987), we know that for every δ > 0, A > 1 there exists
C = Cδ > 0, Y = Yδ,A > 0 such that

f−1(y) ≤ Cy(1/ρ)+δ, ∀y ≥ Y (6)
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f−1(y)
f−1(t)

≤ A
(y

t

)(1/ρ)+δ

, ∀y ≥ t ≥ Y (7)

Let 0 < δ < k − (1/ρ) and A > 1 be fixed. Let ε > 0 be arbitrary. By (C̃),
there exists N = Nε > Y such that τ(t) < ε, ∀t > N . Using (6),

f−1(y)
yk

∫ N

0

tk−1µ(x; |x| > t)dt ≤ Nk−1 f−1(y)
yk

≤ Nk−1Cy(1/ρ)+δ−k ≤ ε (8)

for y large enough. Using (7),

f−1(y)
yk

∫ y

N

tk−1µ(x; |x| > t)dt ≤ ε
f−1(y)

yk

∫ y

N

tk−1

f−1(t)
dt ≤ Aε

yk

∫ y

N

tk−1
(y

t

)(1/ρ)+δ

dt

=
Aε

yα

∫ y

N

tα−1dt =
Aε

α

[
1−

(
N

y

)α]
≤ Aε

α
(9)

where α := k − (1/ρ)− δ > 0. The proof of (5) is complete by (8)- (9). 2
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