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Abstract

Item nonresponse occurs frequently in sample surveys and other ap-
proaches to data collection. We consider three different methods of im-
putation to fill in the missing values in a random sample {Y;, i =1,...,n}:
(i) mean imputation (M), (ii) random hot deck imputation (R), and (iii)
adjusted random hot deck imputation (A). Asymptotic normality of the
imputed estimators of the mean p under M, R and A and the distribution
function § = F(y) and ¢-th quantile 6,, under R and A is established, as-
suming that the values are missing completely at random. This result is used
to obtain normal approximation based confidence intervals on p, 6 and 6,.
In the case of §,, Bahadur representations and Woodruff (1952)-type confi-
dence intervals are also obtained under R and A. Empirical log-likelihood
ratios for the three cases are also obtained and shown to be asymptotically
scaled x?. This result is used to obtain asymptotically correct empirical
likelihood (EL) based confidence intervals on u, 8 and 6,. Results of a sim-
ulation study on the finite sample performance of normal approximation
based and EL based confidence intervals are reported. Confidence intervals
obtained here do not require identification flags on the imputed values in the
data file; only the estimated response rate is needed with the imputed data
file. This feature of our method is important because identification flags of-
ten may not be provided in practice with the data file due to confidentiality
reasons.
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1. INTRODUCTION

Item nonresponse occurs frequently in sample surveys and other approaches
to data collection. Reasons for item nonresponse include unwillingness of sam-
pled units to respond on some items, failure of the investigator to gather correct
information on certain items, loss of item values caused by uncontrollable factors,
and so on. Item nonresponse is usually handled by some form of imputation to
fill in missing item values. Brick and Kalton (1996) list the main advantages of
imputation over other methods for handling missing data. Imputation permits
the creation of a general-purpose complete public-use data file with or without
identification flags on the imputed values that can be used for standard analyses,
such as the calculation of item means (or totals), distribution functions and quan-
tiles. Secondly, analyses based on the imputed data file are internally consistent.

Thirdly, imputation retains all the reported data in multivariate analyses.

In this paper, we focus on marginal imputation for each item in the case of
simple random sampling; extension to stratified random sampling with indepen-
dent imputations across strata is also outlined. We study commonly used mean
imputation and random (hot deck) imputation of donor values for each item. We
also study a new method, called adjusted random imputation (Chen, Rao and
Sitter, 2000). We assume missing completely at random (MCAR) mechanism
for each item. Random imputation preserves the distribution of item values and
the resulting imputed estimators of mean, distribution function and quantile are
asymptotically consistent, but it leads to imputation variance which can be a
significant component of the total variance of the estimators if the item response
rate is not high. Mean imputation eliminates the imputation variance, but the
distribution of item values is not preserved because of the spike at the common
imputed value. As a result, the imputed estimators of distribution function and

quantile are inconsistent. Adjusted random imputation eliminates the imputa-



tion variance and at the same time preserves the distribution of item values,

leading to consistent estimators of distribution functions and quantiles.

Analysts often treat the imputed values as actual values and calculate the
estimates, standard errors and confidence intervals. But this can lead to sig-
nificant underestimation of variance and confidence interval undercoverage due
to ignoring the variability associated with the imputed values. In this paper,
we develop asymptotically valid inferences that take account of imputation. In
particular, we establish the asymptotic normality of the imputed estimators and
construct normal approximation based confidence intervals on item mean, dis-
tribution function and quantile. We also obtain empirical likelihood (EL) based
confidence intervals. In the complete data setting, the original idea of empirical
likelihood dates back to Hartley and Rao (1968) in the context of sample sur-
veys, and Owen (1988, 1990) made a systematic study of the empirical likelihood
(EL) method. EL confidence intervals are range preserving and transformation
respecting and the shape and orientation of EL intervals are determined entirely
by the data, unlike the normal approximation based intervals. However, the EL

method requires modifications in the case of data with imputed values.

We assume simple random sampling from a large population of size N and
negligible sampling fraction n/N. We also focus on a single item Y and associated
mean p = E(Y), distribution function § = F(y) = P(Y < y) for given y € R
and ¢-th quantile 6, = F “1(¢), 0 < ¢ < 1. No parametric structure on the
distribution of Y is assumed except that 0 < var(Y) = 0 < co. The sample
of incomplete data {(Y;,d;); i = 1,2,...,n} may be regarded as an i.i.d. sample
generated from the random vector (Y, ), where ¢; = 0 if Y; is missing and §; = 1
otherwise. We assume that Y is missing completely at random (MCAR), i.e.,
Pl=1Y)=P(0=1)=p,0< p<1. Inthe stratified case, MCAR is assumed

within strata but the probability of response can vary across strata.



Let r =771 6; and m = n — r. Denote the set of respondents as s,, the set

of nonrespondents as s;,, and the mean of respondents as

— 1

Y,==3 Y.

r ’iESr

We consider three imputation methods: mean imputation(M), random hot deck
imputation(R) and adjusted random hot deck imputation(A). Let YZ-(M),Yi(R)
and Y;-(A),Z' € Sm, be the imputed values for the missing data based on M, R and

(M):Yr

A respectively. Mean imputation uses Y, as the imputed value, i.e. Y,
for all ¢ € s,;,. Random hot deck imputation selects a simple random sample of
size m with replacement from s, and then uses the associated Y-values as donors,
that is, vB — Y; for some j € s,.. The adjusted random imputation method,

)

proposed by Chen, Rao and Sitter (2000), uses v — Y, + (Yi(R) — Y,%R)) as

)

imputed values, where v = LS e, YZ-(R). Let
Y = 6:Y;+ (1= 0)Y, ™, Y = 6+ (1 =)V, Y = 6Yi+ (1 -5)y,Y,
i=1,---,n, represent ‘completed’ data based on M, R and A respectively.

In Section 2, we establish the asymptotic normality of the imputed estimators
and construct normal-approximation based confidence intervals for the popula-
tion parameters. Bahadur representationsof quantiles under R and A are also
given as well as Woodruff (1952) type confidence intervals for the quantiles. In
Section 3, empirical likelihood ratio statistics are constructed, limiting distribu-
tions of these statistics are derived, and empirical likelihood based confidence
intervals for the population parameters are obtained. We show that all the confi-
dence intervals have asymptotically correct coverage accuracy. Results of a simu-
lation study on the relative performance of normal approximation based and EL
based confidence intervals are reported in Section 4, as well as Woodruff-based
intervals for the median 6 1 Extension to stratified random sampling is outlined

in Section 5. Proofs are delegated to an Appendix (Section 7).



2. NORMAL APPROXIMATION

2.1 Mean p

Estimators for p after imputation under M, R and A are given by
B 1> B 1 B 1>
V==Y Yu, Yr==) Yri, Ya=-> Ya,
=1 =1 =1
It is clear that Yy; = Y4 =Y.

The result on asymptotic normality of the above estimators for p is summa-

rized in Theorem 2.1. The proof of Theorem 2.1 is given in the Appendix.

THEOREM 2.1 Assume that 0 <p <1 and 0 < Var(Y) = o? < co. Then
Vi(Yar = i) =5 N(0,p~o?), (2.1)
and
Vi(Ya — p) =5 N(0,p~o?), (2.2)

asn — 0o. Further, assume that there exists an ag > 0 such that E|Y|>T% < cc.

Then, as n — 00,

V(Y — 1) -5 N(0, (1 —p+p~Ho?). (2.3)

From Theorem 2.1, Yy, Yz and Y4 are all consistent estimators of p. Also,
it follows from (2.1), (2.2) and (2.3) that the asymptotic variances of Yy and Y,
are equal and smaller or equal to the asymptotic variance of Yz. Thus, Ys and

Y have higher asymptotic efficiency (AE) than Yg.

To obtain consistent estimators of o2 under different imputations, we examine

the sample variances of the completed data. Under mean imputation, the sample



variance is

SM =3 %(YM,Z Yr)
1 _
=T ST = e o)

It follows that under mean imputation ]5—18%\4 is a consistent estimator of o2.

Secondly, under random imputation, the sample variance is

From the proof of Theorem 3.1, we have

5% =0+ o,(1).

It follows that under random imputation s%% is a consistent estimator of o2.

Finally, under adjusted random imputation, the sample variance is

From the proof of Theorem 3.1, we have

54 =0 +o,(1).

It follows that under adjusted random imputation 334 is a consistent estimator
of 02. Using Theorem 2.1 and the above estimators of o, we obtain normal
approximation based confidence intervals for u. We assume that the observed
response rate p = r/n = >, ;/n is reported in the data file. However, we
do not need to know which sampled units have imputed values (i.e. individual
identification flags, d;, are not needed) in the construction of confidence intervals
throughout this paper. It is often the case with survey data that identification
flags are not provided for confidentiality reasons, among others. Throughout this
paper, we take the observed response rate p as the estimator of p. It is a consistent
estimator of p. Let X ~ N(0,1) and z,/5 be such that P(|X| < z,/9) = 1 — a,
where 2,5 is the upper a/2-point of N(0,1). We then have



(1). CI under mean imputation:

—-1/2

—-1/2 —-1/2

—-1/2

(Yar — zajon™ 72D 2sar, Yar 4 2o on™ 29 250124 2]

(2). CI under random imputation:
[YR - za/gn_1/2(1 - ]5 +ﬁ_1)1/28R, YR + Za/gn_l/Q(l - ﬁ + ]5_1)1/283],

and

(3). CI under adjusted random imputation:

—-1/2

(YA — 2o 25254, Yo+ 2qon 257 2s4].

The above confidence intervals are asymptotically correct (1 — «)-level intervals

for the mean u.

2.2 Distribution Function 6

We only consider random imputation and adjusted random imputation in esti-
mating 6 because the usual estimator of § under mean imputation is not consis-
tent. The estimators of § = F'(y) under random imputation and adjusted random

imputation are respectively given by

3I1—‘

i I(¥as < ). (2.4

and

I(YA,i < y). (2.5)

Fa(y) =

S~
AM:

N
Il
—

The result on the asymptotic normality associated with (2.4) and (2.5) is

summarized in Theorem 2.2. The proof of Theorem 2.2 is given in the Appendix.



THEOREM 2.2 Assume that F(y) > 0. Then,

Vi(Fr(y) —0) 5 N[0, (1 — p+p YF(y){1 - F(y)}], (2.6)

asn — 0o. Further, assume that there exists an ag > 0 such that E|Y|>T% < oo,
and that the density function f(-) of Y exists and continuous in a neighborhood
of y. Then,

Vil(Fa(y) = 6) < N[0.0% p(v)]. (2.7)

as n — oo, where o3 p(y) = (L+p~' = p)F(y){1 = F(y)} + (1 = p)[f*(y)o? +
2f()EYI(Y <y)} —2f(y)F(y)ul.

It follows from Theorem 2.2 that both Fr(y) and F4(y) are consistent esti-
mators of F(y). To apply Theorem 2.2 for constructing confidence intervals on

0 under A, we need the following result which is proved in the Appendix.

LEMMA 2.1 Under conditions of Theorem 2.2,

. n—1/2y _ —n-V
Faty = Tar T Faly =) _ )L ),

2n71/2

Using Theorem 2.2 and Lemma 2.1, we obtain normal approximation based

confidence intervals on 6 under R and A: (1). CI under random imputation:
(FR(Y) = zajen 21 = p+ 5~ 20,0 (y),
Fr(y) + zajon™ (1= p+ 57 om0 ().

where 6%%7F(y) = Fr(y){1— Fr(y)}. (2). CI under adjusted random imputation:

1/

[Fa(y) — zaj2n 26a,0(y), Fa(y) + zapan 26,0 (y)],

where

63.r(y) =1 +p ' —p)Fa(y){1 — Faly)}

+(1 = p)fA(W)6 + 2fa()E{YI(Y < y)} — 2fa(y)Faly)Va]  (2.8)



with 62 = s, and E{YI(Y < 9)} = 2 S, Ya, l(Ya; < y).

Similar to the proof of Theorem 3.1, it can be shown that E{YI(Y <)} =
E{YI(Y < y)} + 0p(1). Combining with Lemma 2.1, it is easy to see that
6%.r(y) is a consistent estimator of 03 j(y). The above confidence intervals are
asymptotically correct (1 — «)-level intervals on 6 = F(y). Note that the above

confidence intervals do not require the identification of imputed values on the

data file.

2.3 ¢-th Quantile 0,

We only consider random imputation and adjusted random imputation for esti-
mating 6, because the estimator of 6; under mean imputation is not consistent.
The estimators of §, = F~1(q) after random imputation and adjusted random

imputation are respectively given by
659 = inf {Fr(u) > ¢} = F'(a),

and

ééA) =inf, {Fa(u) > q} = Fgl(Q)’

where Fr(u) and F4(u) are defined in (2.4) and (2.5), respectively.

The result on the asymptotic normality associated with ééR) and é((f‘) is given

in Theorem 2.3. The proof of Theorem 2.3 is given in the Appendix.

THEOREM 2.3 Suppose that there exists an oy > 0 such that E|Y [>T < oo,
and that the density function f(-) of Y exists and continuous in a neighborhood

of 04 with f(6q) > 0. Then as n — oo,

Vi@ —6,) -5 N(0,0%,,), (2.9)



and

Vi85 — 6,) 5 N(0.0% ), (2.10)

where o, = (1 —p+p )l — )/ f(0q), 0% 4 = 051/ [*(0,), and 0y = (1 +
p 1 =p)g(1—q)+ (1 —p)[f?(0y)0? +2f (0,) E{YI(Y < 04)} —2f(04)qu]. Further,

Bahadur representations of égR) and ééA) are given by

0" =g, — + op(n~1/?), 2.11

q q f(eq) P( ) ( )
and

A P _F

H(SA) =0, — A(%) (6a) + op(n71/2). (2.12)

f(6y)

To apply Theorem 2.3 for constructing confidence intervals on 6,, we need

the following result which is proved in the Appendix.

LEMMA 2.2 Under the conditions of Theorem 2.3,

A FR(é((]R) + n’1/2) — FR(é(SR) — n’1/2)

fR(é((IR)) = 2n_1/2 = f(QQ) + Op(1)7
T Fa(@$V +n=12) — Fu (0" — n—1/2
atd) = A0 )= Sl L 100 + 00,

and

1 Y, I(Ya; <0 = B{YI(Y < 0,)} + 0,(1).
n ) ) q q p
=1

Using Lemma 2.2 and Theorem 2.3, we obtain normal approximation based

confidence intervals on 0:

(1). CI under random imputation:

[‘%R) - Za/2n71/2€7R,q, é(SR) + za/anl/Q&Rﬂ},

where



From Lemma 2.2, we can see that (712% ¢ 18 a consistent estimator of 012% -

(2). CI under adjusted random imputation:
[é(gA) — Za/anl/Qé'Ag, é((]A) + za/2n71/2(7,47q] ,
where
644 = 00,4/ FAOF).
with
g = (457" = p)al —q) + (1 - p) | fA(0))5?

P (h 1 5 1 .
+ 20400 { = Yo VI < 070 + — 30 vV I <0}

1ESy 1ESm

— 24(05")g¥a). (2.13)

From Lemma 2.2, we can see that 6% q 1s a consistent estimator of o3 g The

above confidence intervals are asymptotically correct (1 — «)-level intervals on

0,

Using the ingenious method of Woodruff (1952), different intervals on 6, under
R and A can be constructed. An advantage of Woodruff intervals under R is that
the intervals can be obtained from the estimator of F(y) without estimating the

density function f(6).

(W1). Woodruff-type CI under random imputation:
[Fr'(a = za/n™ a1 = @)1 = p+ 5~ )}7?),
Fpt(a+ zapn™ a(1 =) (1 =p+5 ")}/,

We note that n=1q(1—¢q)(1 —p+p~1) is a consistent estimator of the variance of
Fr(6,). Denote s, = {q(1 — ¢)(1 — p+p~")}/2. We now show that as n — oo,

the above Woodruff confidence interval is asymptotically correct, i.e.,

P[Fi(q = 2apn™250) <0, < Fl(g+ 2o Psn)| > 1-a. (2.14)

11



Similar to the proof of Lemma 2.1 in the Appendix, we can show that
Fr(0g + €1n) — Fr(0g — €2n) = f(0g)(e1n + €20) + Op(”ilﬂ)

for any €;, = Op(n*1/2),j = 1,2. Then by Theorem 2.3 and following the proof

of Theorem 4 in Francisco and Fuller(1991), we have
Frl(a) &0 Pzappsn{f(0a)} " = Fr'(a £ 0720 psm) + 0p(n™'/?),
Therefore, to prove (2.14), we only need to show that

P [F!(q) = zajon 250 {f(09)} ™" < 04 < Fi'(q) + zajon ™ 2sn{ (05}

—1—a,

which is implied by Theorem 2.3.

(W2). Woodruff-type CI under adjusted random imputation:
{Fgl(q - Za/Qnil/Q&ALq)v Fgl(q + Za/2n71/2a-141,f1)} :

We note that n=16%, o above is a consistent estimator of the variance of Fa(6,),
but it depends on fA(égA)). Similar to above derivations, we can also show
that the above Woodruff intervals have the asymptotically correct (1 — a)-level

coverage probability.

Chen and Shao (1999) also obtained normal approximation intervals for the
mean and quantiles and Woodruff intervals for quantiles under random imputa-
tion. However, they appealed to a Lemma in Schenker and Welsch (1988) that
requires a stronger regularity condition than the condition 2 in Lemma 7.1 of the

Appendix (Chen and Rao, 2006). We verified condition 2 explicitly in each case.

12



3. EMPIRICAL LIKELTHOOD CONFIDENCE INTERVALS

3.1 Mean p

Let Zpari(p) = Yo — ps Zm,ri(pt) = Yri — p, and Zp, 4,i(p) = Ya; — p. Then
the empirical log-likelihood ratios for p under the three different imputations
M, R and A are defined respectively as

n
M

b (1) = —2 o max v oan Elog(npgm )),
Zizlpim’ )Zm,lvl,i(;u)zoy Eizlpinh =1l4=1

,R
€m7R7n(/,L) =-2 " (m,R) maX (m.R) _ Zlog npz 7
Zz 1 plm Zm R,i(# Zz 1P zm

and
- (m,4)
b am (1) = =2 s g T o o Z log(np;"").
Note that the empirical likelihood ratios are based on the completed data Yy, Yr;
orYu,i=1,2,...,n. It can be shown, by using the Lagrange multiplier method,

that

Cratn(p) =2 log {1+ A0 Z, ari(w)},
=1

where )\%m’M) is the solution of the equation

_Z mMz(N) =0,

i=1 1"')\ mM,Z(:u)
em,Rn —QZlog{1+)‘mR)ZmRz(N)}a
1=1

where Aﬁ{”’R) is the solution of the equation

_Z mRz(N) =0,

=1 1+ )\(m ) Zm,R,i(N)
and

Em,An —QZlOg{1+)‘mA)ZmAz(ﬂ)}7
=1

13



where )\%m’A) is the solution of the equation

_Z mAz(,U) —0.
i=1 1"')\ mA,i(:u)

Results on the asymptotic distribution of the above empirical log-likelihood
ratios for p are summarized in Theorem 3.1. The proof of Theorem 3.1 is given

in the Appendix.

THEOREM 3.1 Under the conditions that 0 <p <1 and 0 < Var(Y) < oo,

d _
b v (1) == P23 (3.1)

asn — 0o. Further, assume that there exists an ap > 0 such that E|Y|>T% < co.

Then, as n — oo,
d _
b in (1) == (L= p+p )xi (3.2)
and

d _
bm,an(p) == p~ X3 (3.3)

Using Theorem 3.1, asymptotically correct (1 — a)-level empirical likelihood
based confidence intervals on p are obtained as follows. Let X%,a be the upper

a-point of x? variable, i.e. P(x3 > X%,a) = a. Then

(1). CI under mean imputation:

{ﬁ : ﬁgem,M,n(ﬁ') < X%,a}7

(2). CI under random imputation:

{i:(Q=p+p ) Mmrn(d) < x3a),
and

14



(3). CI under adjusted random imputation:

(i D b, am (/1) < X3 o)

It follows from (1)—(3) that the EL intervals for  depend only on the completed
data and the response rate p reported in the data file. Standard EL methods
for the complete response case can be applied to the data file to calculate the

empirical log-likelihood ratios and hence EL intervals using (1)—(3) above.
3.2 Distribution Function 6

Let Zgri(0) = I(Yr; <y)—0and Zy 4,(0) = I(Ya; < y)—6. Then the empirical

—_ 14k ’

log-likelihood ratios for 6 under imputations R and A are defined respectively as

lirn(0) =—2 . 1z:log npl ),

( ) maX
n d,R
Z’L lp ZdR Ozz 1 %

and

Laan(0)=—2 max Zlog npZ
Z:z ) pid JA) Zd,A -0 EZ ) pld A)_1

Again, the empirical likelihood ratios depend only on the completed data. It can
be shown, by using the Lagrange multiplier method, that
n
lapa(0) =2 log {1+ AP Z4pi(6)),
i=1
where )\%d’R) is the solution of the equation

1 & Zq,Rr,i(0)

- it =0,
Z () Z4,Ryi

a1+ A

and

Ca,an(0) =23 log {1+ MY Z, 4,(0)},
=1

where )\gd’A) is the solution of the equation

1 Zn: Za,A,i(0) _ 0
n 1+ MY 2 4400)

15



Results on the asymptotic distribution of the above empirical log-likelihood ratios
for 6 are summarized in Theorem 3.2. The proof of Theorem 3.2 is given in the

Appendix.

THEOREM 3.2 Assume that F(y) > 0, and that there ezists an oy > 0 such that

E|Y |2 < co. Then as n — oo,

larn(0) 5 (1= p+p (3.4)
and
laan(0) 5 02 1 (v) [ {F () (1 — Fy)) X3, (3.5)

where 0 p(y) is defined in Theorem 2.2.

Using Theorem 3.2, asymptotically correct (1 — a)-level empirical likelihood

based confidence intervals on 6 are obtained as follows:

(1). CI under random imputation:
{0:(1=p+p") arn(®) <xiab

and

(2). CI under adjusted random imputation:

{0:[FW{1 — FW)}/65 p(y)laan(®) <3}

where F(y) = Fa(y) and 6% is the same as in (2.8) so that they are consistent

estimators of the corresponding population quantities.

It follows from (1) and (2) that the EL intervals for F'(y) depend only on the

completed data and the response rate p.

16



3.3 ¢-th Quantile 0,

Let Zyri(0g) = I(Yr; < 0g) —q and Zy 4(84) = I(Ya; < 0;) —q. Then the
empirical log-likelihood ratios for 0~q under imputations R and A are defined

respectively as

Ly rn(by) = —2 . max . Zlog npz(q’ )),
:7'11)(‘1 )ZqR'L(g OZ'L 1p(q ) _ 1

and

n
A
lygan(0g) = —2 . ma ( Zlog(npgq ))'
PN Zy4,4(09) OZZ pY=15

Again, the empirical likelihood ratios depend only on the completed data. It can
be shown, by using the Lagrange multiplier method, that

lyrn(0y) = 2zlog{1 + 2GR 7 20},
=1

where )\%q’R) is the solution of the equation

_Z Zg.R.i(0q) —0
1+ A Z (0,

and

g an(0q —2Zlog{1—|—)\(q‘4) Zy2i(09)},
=1

where Aﬁ?"“) is the solution of the equation

l i Zq,A,i(eq)

i 14 )\5“?714) Zg,4,i(0q)

=0.

Results on the asymptotic distribution of the above empirical log-likelihood
ratios for 6, are summarized in Theorem 3.3. The proof of Theorem 3.3 is given

in the Appendix.

17



THEOREM 3.3 Under conditions of Theorem 2.8, as n — oo,
d —1y.2
o, rn(0g) — (1 —p+p~ )x1, (3.6)

and
loan(8y) —5 0314101 — )} (3.7)

where 0'1241’(] is defined in Theorem 2.3.

Using Theorem 3.3, asymptotically correct (1 — a)—level empirical likelihood

based confidence intervals on 6, are obtained as follows:

(1). CI under random imputation:
{00 (L= p+ 57" Hyra®) <xia}

and

(2). CI under adjusted random imputation:

{éq {q(1 - q)/‘%il,q}gq,Am(éq) < X%,a}a

where 612417(] is the same as in (2.13), which is a consistent estimator of 01241’(1. It
follows from (1) and (2) that the EL intervals for 6, depend only on the com-

pleted data and the response rate p.

4. SIMULATION STUDY

We conducted a small simulation study on the finite sample performance
of normal approximation and empirical likelihood based confidence intervals on
the mean p = E(Y), distribution function § = F(y) for fixed y and quantile
0, = F~1(g). Random samples {Y;, §;;i = 1,...,n} were generated from the
standard exponential distribution with mean 1 and three cases of uniform re-

sponse probabilities, p = 0.7, 0.8, 0.9.

18



For each of the three cases, we generated 10,000 random samples of incom-
plete data {Y;,d;, i =1,---,n} for n = 60 and 120. For nominal confidence level
of 95%, using the simulated samples, we evaluated the coverage probability (CP),
lower tail error rate (L), upper tail error rate (U) and the average length of the
interval (AL) of the normal approximation based (NA) and empirical likelihood
based (EL) intervals for the three imputation methods: mean imputation (M),
random hot deck imputation (R) and adjusted random hot deck imputation (A).

In the case of quantiles, we denote the Woodruff type confidence intervals as W.

Table 1 reports the simulation results for the mean pu = E(Y). It is seen
from Table 1 that EL provides more balanced error rates (L and U) than NA
under the three different imputation methods M, R and A. In the case of NA,
L is significantly lower and U is significantly higher than the nominal 2.5%. For
example, for n = 60, p = 0.7 and mean imputation (M), L= 1.3% and U= 6.0%
for NA compared to L = 3.0% and U = 3.4% for EL. The imbalance in error rates
decreases as n increases. Under M and R, the performance of EL in terms of CP
is slightly better than NA, but NA seems to be slightly better than EL under A.
In terms of average length (AL), M and A perform similarly whereas R leads to
larger AL, as expected. Also, NA performs slightly better than EL in terms of

AL but at the expense of undercoverage.

Table 2 reports the simulation results for the distribution function § = F(y) =
0.86 under R and A; note that M is not suitable for # and the quantile 6, since
it leads to asymptotically inconsistent imputed estimators. It is clear from Table
2 that EL outperforms NA in terms of CP, with values closer to nominal 95%
even for n = 60, and balanced error rates L and U. For example, with n = 60,
p = 0.7 and random imputation R, CP = 90.9%, L = 7.9% and U = 1.2% for NA
compared to CP = 95.1%, L = 2.3% and U= 2.6% for EL. Again, NA is better

than EL in terms of AL but at the expense of undercoverage.
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Table 3 reports the simulation results for the median 6 1= F*I(%). Here NA
leads to severe undercoverage whereas the Woodruff (W) method of EL leads to
CP closer to nominal 95%. For example, with n = 60, p = 0.7, and random
imputation (R), CP = 87.3% for NA compared to CP = 95.0% for EL, and CP
= 95.5% for W. Also, EL and W provide similar results in terms of CP, L, U
and AL, although AL is slightly smaller for EL. Our results suggest that NA is
not recommended for quantiles, and either EL or W should be used in practice.
However, EL provides a unified method for all the parameters i, 6 and 6, whereas

W is tailor-made for 6.

5. STRATIFIED RANDOM SAMPLING

5.1 Normal approximation intervals

Suppose that the population is divided into H strata with known relative sizes
Wy, h=1,...,H; Zle W, = 1. Independent simple random samples of sizes
np, h =1,..., H are drawn from the strata, and the strata sampling fractions,
np/Np, are assumed to be negligible. We express p, 8 and 6, as p = SWppup,
F(y) = SWyF,(y) and 6, = F~1(g). We regard the sample of incomplete data in
stratum A, {(Ypi, Oni), t = 1,...,np} as an i.i.d. sample generated from the ran-
dom vector (Y, 0p). Put n = >, n. We assume MCAR mechanism within each
stratum, i.e., P(dp, = 1|Yy) = P(d, = 1) = pp, 0 < pp < 1. Imputations M, R
or A are performed separately in each stratum, and we have Yy = SW,Yum,
Yr = SW},Yg, and Y4 = YW, Yy, as estimators of ;. We obtain an extension
of Theorem 2.1 by letting np — oo for each h with fixed H and assuming that
n/np — (0 < Ay < o) and that 0 < var(Y,) = 07 < co. We assume that
the imputed data file provides stratum identifiers and stratum response rates

Pr = r/np. Identification flags on the imputed values are not needed.
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Normal approximation based (1 — «a)-level intervals on u are given by
Yy + ZQ/Q[EW}le}?lﬁEIS?Wh]l/2, Yr + za/Q[Zan,jl(l — Pp + ﬁgl)s%h]lp and
Ya+ 2z, /2 [EW,?nglﬁglsih]l/ ? under M, R and A respectively, using obvious ex-

tension of the notation for simple random sampling.

Estimators of F(y) under R and A are given by Fr(y) = XWp,Frp(y) and

Fa(y) = SWpFan(y

).  Normal approximation based (1 — «)-level intervals
are given by Fr(y) £ za/Q[Zan;:l(l — pn + ﬁ;l)ééFh(y)Fp and Fa(y)+

Za /2[2W}3n}:16?4’ P, (y)]l/ % under R and A respectively, using obvious extension of

previous notation for simple random sampling. Specifically, &% F, 1s the estimator

of Fr(y){1— Fn(y)}

We focus only on the Woodruff intervals for quantiles under R and A because
normal approximation based intervals for quantiles did not perform well under
simple random sampling in our simulation study (Section 4). The (1 — a)-level

Woodruff intervals on 6, under R and A are given by
Pt (0= 202 {SWEn; (1= b+ 5, )55, (0)}7)
Fi (04 2a/o{SWing (1= pn + 5, )5 5, (02))7) |

and

(Fat (0= 20 5WEn; 6300} %) it (a4 205N 65050

respectively, using obvious extension of previous notation for simple random sam-

pling.
5.2 EL intervals

We now obtain EL intervals under stratified random sampling. For EL based

)) subject to Eipl(lT’M) =1,

CI on u, under M, we maximize >p%; log(nhpg?’M
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h=1,...,H and ZhWhZipéT’M)YMM = u, leading to empirical log-likelihood

ratio

= . (m, M)

bnpain(pt) = 2 i <h2 iy En2ilog(napy; )

= 23,5 log{1 + mpt (1) (Yar,ni — Yman()}

where n = (nq,...,ng),my = nWhn;I, and Y, avr.p (1), t(p) satisfy
Yar,hi —Vm, 0,0 (1) _
{ 2 T+mpt () (Yar,hi —Vm,m,n (1) — 0,1<h<4H, (5.1)
S Whtbm mn (1) = pe

Zhong and Rao (2000) and Wu (2004) have given algorithms for evaluating
empirical log-likelihood ratio for the complete data case. Here the same algo-
rithms can be applied to the imputed data file to calculate £y, prn(pe). Similarly,
lp rn(pt) and £, 4 n(p) are obtained. It can be shown, under the assumption
that \, = n/np — Ap(0 < Ay < 00), that £y, prn(t), € rn(pt) and £, a4 ()

respectively have limiting distributions
- —1 - -1
Y Wiy o (D Winoden) " Xds Y Win(l=patpy )on (D Wiuokn) ™ Xd
h h h h

and X", W2Aup;, Lo (3, W}%)\hai’h)_le respectively, where aﬁh = proi+(pun—

Y h (1)) 0f g = 0 + (h — Ym,rn(1)? and 0%, = op + (= Ym,an(p)?.
Thus EL based (1 — «)-level intervals on p are given by

-1
(i (Wi ) | S WEMGR 0 enarn < 42 .
h h

)

-1
{[1, : (Z W;%)\h(l — Dh +ﬁh1)8%h) [Z W}%)‘h&%,h(ﬁ)
h h

em,R,n(ﬁ) < X% oc}

and

-1
{m (Swiha i) | S W0 nan() <3
h h

under M, R and A respectively, using obvious extension of the notation for simple

random sampling, where 6]2\/_[7h(u) = pnsisn + Yarn — Ymoarn(1))?, 6]2%7;1(”) =

S%h + (Yan — TZJM,R,h(M))2 and 6,24,h(ﬂ) = 3,24h + (Yan — Q%,A,h(ﬂ)Q-
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We now turn to EL intervals on § = F(y) under R and A. Under R, the em-

pirical log-likelihood ratio £q g n(0) = —2maxp,, 1<h<H1<i<n, 2hZi log(nhp%’R))
subject to Zip%’R) =1, h=1,...,H and ZhWhZip%’R)I(YRM <y =6

L4 An(0) is obtained using (Y4 p; < y) similarly. The EL based (1 — a)-level
intervals on 0 are given by
(7 (St —nishn )
| WG 0 + A0 tarn®) <
and
(7 (S Wihchnw) [ S WG a0+ 80| t0an®) < .}
under R and A respectively, using obvious extension of the notation for simple

random sampling, where 63 4 1 () = Fan(){l — Fan(y)} , Arp(0) = Fri(y) —
Ya.rn(0) and Ay p(0) = Fan(y) — ta,a,n(0) respectively.

Finally, we investigate the EL based CI on 8, = F’ ~1(q). Under R, the empir-
ical log-likelihood ratio ¢4 rn(fy) = —2maxy,, 1<h<H,i<i<n, 2h>i log(nhpgg’R))
subject to ip!?™ =1, h=1,..., H and S, Wy Sipe™ Z, il Vani < 6,) = ¢.
lq.4n(6y) is obtained similarly. The EL based (1 — a)-level intervals on 6, are

given by

and

~ A~ _1 A~ A ~
{00 (S Wehd%u,) | S WRAa - 0)+ 524,0)
h h

gq,A,n(éq) < X%,a}

under R and A respectively, using obvious extension of the notation for simple
random sampling, where A, g (0,) = Fru(8,) — ¥qrn(0y) and A, an(0,) =

Fan(0y) — g.a1(0,) respectively.
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6. SUMMARY AND CONCLUSIONS

In this paper we considered three different methods of imputation to fill in
the missing values in a random sample {Y;, ¢ = 1,...,n}: mean imputation
(M), random hot deck imputation (R) and adjusted random hot deck imputation
(A). Assuming uniform response probability p, we have obtained asymptotically
correct normal approximation (NA) based confidence intervals on the mean p,
distribution function § = F(y) and ¢-th quantile 6, = F~1(g). Asymptotically
correct empirical likelihood (EL) intervals are also obtained by first showing that
the empirical log-likelihood ratios are asymptotically scaled x? variables. Both
NA and EL intervals do not require identification flags on the imputed values in
the data file; only the estimated response rate p is needed with the imputed data
file. Simulation results indicated that EL performs better than NA in providing
balanced lower (L) and upper (U) tail error rates. Also, NA lead to severe
undercoverage in the case of median (6 1 ) unlike EL and the method of Woodruff

(1952).

If the objective is to estimate different parameters p, 6 and 6, from the im-
puted data file, then mean imputation (M) is not suitable and normal approxi-
mation (NA) leads to severe undercoverage in the case of 6, and unbalanced tail
error rates in the case of 4 and 6, unlike EL. We recommend the use of random

(R) or adjusted random (A) imputation and EL intervals for all the parameters.

Extensions to complex sampling designs, based on the pseudo-EL approach of

Chen and Sitter (1999), and multiple imputation classes are under investigation.
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7. APPENDIX: PROOFS

The following lemma of Chen and Rao (2006) will be used in the proofs of

main results.

LEMMA 7.1 Let Uy, V, be two sequences of random wvariables and B, be a o-

algebra. Assume that: 1. There exists o1, > 0 such that
o1V, -5 N(0,1)

as n — oo, and V, is B, measurable. 2. E[U,|B,] = 0 and Var(U,|B,) = 03,
such that

Sup | P05, U < 1By) = #(0)] = 0,(1)
where ®(+) is the distribution function of the standard normal random variable.
3. 92 =0%,/0%, =%+ 0,(1). Then, as n — oo,

Un + Vn d

——_ % N(0,1).
VoI + 03,

PROOF OF THEOREM 2.1. Noting that Y3 = Y4 = Y,, it follows that

ViiVar = ) = Vil¥a - ) = Vi{ > 3 (0 - )}

iGSr

1

V{3 S 800} = s { e S a0 )

= {p+op(1)} {\/—25 (Yi - )}
So from the Central Limit Theorem for i.i.d. random variables and MCAR
assumption, we have (2.1) and (2.2), noting that E(¢;|Y;) = E(6;) = p and
V(6:]Yi) = B(6:]Y:) = [E(6:|Y)]? = p—p?. Let Vo, = Vn(Yar — 1), Un = V(YR —
Yu) and B, = o((6;,Y;),i = 1,-++,n). So V,, is B,, measurable, and \/n(Yg—pu) =
Vi + Up. If we let 0%, = p~1o?, then from (2.1),

o1V, -4 N(0,1). (7.1)
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We now verify condition 2 in Lemma 7.1. It can be seen, for i € s,,, that

BOP1B,) = Vo Var(V P B) = = 30 (% - Vo2
1ESy

It follows that

% % Y n—rfl
E(Yr|Bn) = Y, Var(Yg|B,) = 7{;

Z(n—ﬁ)g}.

1ESy

Let 03, = %{% Dies, (Yi— 2)2} Then
E(Up|Bp) = 0, Var(U,|B,) = 03,.

Similar to the proof of (2.1), it can be shown that o3, = (1 — p)a? + o,(1).
Further,
im1 E(|YRa|*"°|By)
{31 E(Yg,1Bn)}(2Fe0)/2
T TR S S, 16+ (1 )Y e
{n=lr 1 00 Y e, (0iYi + (1 = 6;)Y;)2} (2 Fa0)/2
It is clear that

n 1
n~lrl Z Z (6:Y; + (1 6,)Y;)? = r Z‘SiY? = 0% + p? + 0p(1).

i=1jEs, i=1
On the other hand, there is a constant Cy depending only on ag such that
n
RS Y 10+ (1= a)Ye
1=1j€sr

n
< Con LY ST |V 4 |y PTe0) = 200 BV 20 4 0,(1).
i=1j€Es,

It follows that the right hand of (7.2) converges to 0 in probability. So by Berry-
Esseen’s Central Limit Theorem, sup; |P(05,, Uy, < t|B,,) — ®(t)| = 0p(1). Hence,

(2.3) follows from Lemma 7.1, and the proof of Theorem 2.1 is complete.

PROOF OF THEOREM 2.2. Denote Fy.(y) = 13", I(Y; < ). Then n(F(y)—
0) = %ﬁ w10 {1(Y; <y)—0}. So from the Central Limit Theorem and MCAR
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assumption, we have

I F(y){1 — F(y)}]"V*V/n(Fo(y) — 6) —% N(0,1). (7.3)

Let Vi, = Vn(F(y) — 0),U, = Vn(Fr(y) — F(y)) and B, = o((6;,Yi),i =
1,---,n). So V,, is By, measurable, and \/n(Fgr(y) — 0) = V,, + U,. We note that

1 & 1
Fr(y) = 5ZI(YR,¢ <y di=1)+ 5ZI(YR,¢ <y, =0)
i=1 i=1

r - 1
=By +— > v\ < ).

1€ESm

So

B < y)|By) = Fo(y), Var(I(Y,"" < y)|B,) = F(y){1 - E:(y)}.
It follows that

n—r

E(U,|B,) = 0,Var(U,|B,) =

(B {1 - Fr(w)}]-

Let

030 = —[B){1 - E:w)}]-

Then Var(Uy,|B,) = 03,. It can be shown that

05, = (L =) F(y){1 — F(y)} + op(1).

So by Berry-Esseen’s Central Limit Theorem, sup, |P(c5, U, < t|B,) — ®(t)| =
op(1). Hence, (2.6) follows from Lemma 7.1. Denote Fj%,(y) = L+ >, I(Yi(R) <
y) and a, = _n(lR) —Y,. Similar to the proof of Lemma 1 in Chen and Shao

(1999), it can be shown that
{Fr(y + an) = Fi()} = {Fr(y + an) = B(y)} = 0p(n™1/%),  (74)

27



and
{Fr(y+an) = F()} = {F(y + an) = F(y)} = 0p(n~"/?). (7.5)

Thus, from (7.4), (7.5) and the conditions in Theorem 2.2,

Fay) = % i (y) + %Fﬁl(@/ + an)
= ~Fy(y) + —E(y) + —{En(y +an) = F(4)}
= ZFoy) + Fn(y) + By + an) = Foly) + 0, (n /)
= ZE,(y) + T En(y) + {E(y +an) = F(y) + 0,(n™"/)}
= ~Fo(y) + - Fi(y) + = {F()an + op(n ")}
= {(ZF(y) = IV} + T {E ) + F@)Y7) + op(n'7)

H(w) + IFR W) + SV — (Fo(y) + ()Y

+o,(n"1?). (7.6)
To prove (2.7), let Vi, = /n(Fy(y) —0), U, = VR [F (y) + f(y)Yn(zR) —{F(y) +
fW)Y}] and B, = o((6;,Y;),i = 1,---,n). So V, is B, measurable, and

Vn(Fa(y) — 0) = Vi, + U,. We now verify condition 2 in Lemma 7.1. It can

be seen, for ¢ € s,,, that

BT <)+ f) Y4B = Fr(y) + f(y)Ys,

Var({1(Y® < y) + F(u)Y, B
= LU <0+ TV~ {F ) + SVl

1ESy

Thus, E(Uy,|By) = 0, and

Var(Un|Bn) =n- :;L—j . %Var({[(Yi(R) < y) + f(y)Yz’(R)HBn)
- % [% Y I <y) + f)Yi —{Fe(y) + f(y)Yr}Q}

iGSr

28



Let
P =2 |2 U <)+ SOV — (Foly) + TP

iESr

Then Var(Uy,|B,,) = 03,. It can be shown that

05, = (1=p){ F(y) = F*(y)+2f () B(VI(Y < ) =2 (y)F(y)pt F2(y)0” }+o0p(1).

So by Berry-Esseen’s Central Limit Theorem, sup, |P(c5, Uy, < t|B,) — ®(t)| =
op(1). Hence, (2.7) follows from Lemma 7.1, and the proof of Theorem 2.2 is
complete. To prove Theorem 2.3, we need the following result, which can be

proved similar to the proof of Theorem 2.2.

LEMMA 7.2 Assume that f(6,) > 0, then for fixed u € R, as n — oo,
Vi(Fr(0g+n"Pog gu)—F (040~ 2og ) ~5 N(O, (1—p+p~) F(0,) {1-F (6,)}).

Further, assume that there exists an ag > 0 such that E|Y|*T?° < oo, and that

f(+) exists and continuous in a neighborhood of 6,. Then as n — oo,
_ _ d
\/E(FA(GQ +n UQUA,QU) —F(0g+n 1/20'14,(1“)) — N(0, 0'1241,(1),

where oR q,04,4 and 41,4 are defined in Theorem 2.3.

ProOOF OF THEOREM 2.3. Note that ¢ = F'(,). For fixed u € R, we have

G(R) )
p{M < u} = P(@((IR) <6, + n—l/Qaquu)
O'R7q
= P{q < Fr(8,+n Y?opqu)}

=P \/ﬁ{FA(Hq + n*1/2aR,qu) — F(0, + n*1/2aR7qu)}
> V{F(8) — F(0y +n 2o qu)}

= P{Vn{Fa(0,+n"Y2orqu) — F(0,+n Y 20ru)} > —oref (0)u + 0(1)}

[Vn{Fa(bq + ”_1/201%,(1“) — F(bg + ”_1/20'R,qu)}
_O'R,qf(eq)

< u+0(1)}
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So by Lemma 7.2, we have (2.9). Similarly, we can prove (2.10). Results (2.11)
and (2.12) in Theorem 2.3 can be proved similar to the proof of Theorem 2 in

Chen and Shao (1999). The proof of Theorem 2.3 is thus complete.

PROOF OF THEOREM 3.1. Similar to Owen(1990), it can be shown, under the

condition EY? < oo, that

Zm i) = 1/2 Z ()| = 1/2
lrgzaéJ m,M,i ()] = op(n ),fgggxnl m,Ri(1)| = op(n'/7),

A _ 1/2
112%); ‘Zm,A,z(N)‘ - Op(n ) (77)

On the other hand,

LN Banai) = UGV~ )+ (1= 8Ty — )} = po* 4 0p(1), (78)
=1 =1

1, 1

=322 pili) = = {8V — )+ (1= 6 (¥ - %)
i=1 i=1
1
_ 2 1 m il Y(R) _ 2
po® +op(1) + - — 3T (" — )

and
1 & 1 &
=322 44 = = {0V — )+ (1= 0) (K = 2
=1 =1
2 1 ¢ (R) V7 o (R)\2
=po’ +op(1) +— > (1=8)(Y; " = p+ ¥, - ¥57)
=1

= ot 4 01 + = 31— ) — it 0, (1) = 0% 401 (7.10)
=1

By Theorem 2.1 and (7.7) to (7.10), similar to the proof of Theorem 1 in
Owen(1990) it can be shown that

b () = {% i ngn,M,i(N)}_l{% g Zm,M,z‘(N)}2 + op(1) <, P2,

=1
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N

n -1 n 2
bnean) = {3 Z2nit)} {52 X Zmmsli) | +op(1)
i=1
= (1 =p+p i,

and

1 & RS 2 d. _
o) = {23 Zoasi) ) {22 Zmasi) | +0,() <557
1=1 i=1

Thus we have Theorem 3.1.

PROOF OF THEOREM 3.2. It can be shown, by using the results in Theorem

2.2, that
2 2 Zini0)
:—Z{I 0 + (1= 0V < y) = 201(5,Y; + (1= 0¥V < ) + 6%}
=1
= Fp(y) — 20FR(y) + 6% = (1 — 0) + 0,(1)
= F(y){1 - F(y)} + op(1), (7.11)
and
1~ 9
522(1,/1,1‘(9)
=1

= %i{f@‘yf + (1= 6 < y) —201(6,Y; + (1 — 6:) VY < ) + 0%}
= FA(—y) —20Fa(y) + 6% = 0(1 — 0) + 0,(1)
= F(y){l - F(y)} + Op(1)7 (7'12)

By (7.11), (7.12) and the boundness of Z; p;(f) and Zg :(0), similar to the
proof of Theorem 1 in Owen (1990) it can be shown that

n —1 n 2
larn(0) = {% > Zfam(@)} {—\/15 > Zd,R,z‘(e)} +op(1) L (1—p+p ),
i=1 =1

and
n -1 n 2
taan® = {3 2000} {75 2 Zaas®] +op(1) - 3000
i=1 =
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Thus we have Theorem 3.2.

ProOOF or THEOREM 3.3. It can be shown, by using the results in Theorem
2.2, that

- Z Zq,R,i(G(I)

ni3

1 & .
= ;{I(&-Yi + (1= 6)Y I < 0,) = 2q1(5:Y; + (1—6,)V D < 0,) + ¢}

= Fr(0q) — 2qFr(0) + ¢°

= F(0g){1 — F(0g)} +0p(1) = q(1 — q) + o(1), (7.13)
and
1& 9
E ZZq,A,i(Hq)
i=1

1 & A A
= =3I+ (1= 60V <6,) - 201(5Yi + (1= 6)YY < 6,) + ¢}

=1
= FA(QQ) — QqFA(Qq) + q2
= F(0){1 = F(0g)} + 0p(1) = q(1 — q) +0(1), (7.14)

By Theorem 2.2, (7.13), (7.14) and the boundness of Z, r;(0) and Zg 4,(0),
similar to the proof of Theorem 1 in Owen(1990) it can be shown that

15 YRR L
gq,Rm(e) - {ngzq,}%,i(eq)} {\/ﬁgz 7R,Z(0q)} + p(l)
L @-p+pnd,

and
2

taanl® = (33 a0} {353 Zuait)} o)

=1

L (0% a1 — @)Y

Thus we have Theorem 3.3.
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PROOF OF LEMMA 2.1. We use the notation used in the proof of Theorem 2.2.

Similar to the proof of (7.6), we have

Faly+n'?) = %Fr(y +n71%) + %Fr’;(y +n % +ap)
T = m

— _Fr 71/2 _F*
- (y+n—7%)+ - m(Y)
+

@)+ an) + 0y (n )},

and

_ m._, _
Faly — 1/2) r(y—n 1/2)+EFm(y—n 1/2+an)

_ m_,
(y—nY%)+ —F(v)

{f)(—n"2 +an) + op(n™ %)},

+ :m:m

33 M

Combining with (7.5) and the conditions in this lemma, it follows that

Faly+n~?) = Faly —n~'/?)

= %{Fr(y +n 2 = Fo(y —n~')} + 2n*1/2%f(y) +op(n112)

= ~{F(y+n7%) = Fly—n""2)} + 207 22 f () 4 0y (n 1)
=200 2f(y) + 20 P () 4 0p(n %) = 2f (g 4 0y (n 11,

Thus we have Lemma 2.1.

PrOOF OF LEMMA 2.2. Let b, = éf/‘) — 04. We use the notation in the proof

of Theorem 2.2. Similar to the proof of Lemma 2.1, write

Fa(0$Y +n712) = Fa(0, + by, +n7/?)

%F(e byt 2+ 2 (6,7 4y +by)
%F (0 + by +n*1/2)+ ZFE(6,)
{6, (0 1/2+bn+an) +op(n~2)},

and
Fa(0{) —n™V2) = Fa(0, + b, — n %)
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T:F*(G —n Y2 £ a, +by)

\3
=
_|_
5
|
S
L
~
N
_|_

_r

n

T = m

= ZF(0, 4+ b, —n Y+ (0
o (q+ n )+n m(q)
_|_

{f(eq)(_nil/2 + by + an) + Op(nil/Q)}'
Combining with (7.5) and the conditions in this lemma, it follows that
Fa(0% +n12) — Fo(05Y —n™Y2) = 2f(0)n /2 + o0p(n~1/2).

Thus we have the first result of Lemma 2.2. Similarly, we can prove the second

result. To prove the third result, write

= ZYI Y; <6

ZEST‘
:—ZYIY<0 += ZYI@ <Y; <M, 0N — 0, >0)
’LGST ZEST
+= ZYI 0N < Y; < 0,000 — 0, < 0) = Ly + Lo + I3 (7.15)
ZEST

It can be shown that Iy, = E{YI(Y < 6,)} + 0,(1). From Theorem 2.3, ééA) =
6, + op(1). So with probability tending to one, ]é(A) — 6,4 < ¢ for any 6 > 0.
Thus, with probability tending to one, Iy, < 3, |Yi|I(6g < Y; < 0, +6) <
(’911""5)? Yies, (g <Yi < 0540) = (|6g] + 0){F (6 + ) — F(0q)} + 0p(1) = 0p(1)
as 0 — 0. Similarly, I3, = o,(1). It follows that
- Z Y;iI(Y; <0WV) = B{YI(Y < 0,)} + op(1).
" icsn

On the other hand, it can be shown that

- Z Y Y(A < é(A))

zesm
:_Zgy B < 0,)+0,(1) = — %:YIY<0)+OP(1).

Thus we have the third result of Lemma 2.2.
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TABLE 1

Confidence interval coverage probability (CP), lower (L) and upper (U) tail error
rates and average length (AL) for the mean p = E(Y) with p = 0.7, 0.8, 0.9
and n = 50, 120: Imputation methods M, R and A; R = 10,000 simulations;

Y ~ exp(1); NA = normal approximation, EL. = empirical likelihood

CP(%) L% U%) AL
n p IMP NA EL NA EL NA EL NA EL

60 0.7 M 926 93.7 13 3.0 6.0 3.4 0.59 0.64
A 924 917 14 36 6.1 4.7 0.58 0.60

R 927 937 12 24 6.1 40 0.64 0.66

0.8 M 927 93.7 12 25 6.0 3.8 0.55 0.58

A 924 912 13 3.7 6.3 51 0.55 0.61

R 925 930 14 30 6.1 40 0.59 0.57

09 M 927 935 12 26 6.1 40 0.52 0.54

A 928 927 12 22 6.1 48 0.52 0.53

R 927 934 11 25 6.1 43 0.54 0.56

120 0.7 M 93.7 939 12 34 5.1 28 042 044
A 934 916 14 36 52 48 0.42 043

R 935 940 12 25 53 35 046 047

08 M 937 942 13 3.0 5.1 29 039 041

A 934 917 14 38 53 45 0.39 040

R 936 942 12 3.0 5.1 3.0 042 0.43

09 M 939 942 13 28 48 3.1 0.37 0.38

A 937 937 14 29 49 35 0.37 0.38

R 938 95.0 13 21 49 29 0.39 0.39

37



Confidence interval coverage probability (CP), lower (L) and upper (U) tail error
rates and average lengths (AL) for the distribution function § = F(y) = 0.86
with p = 0.7, 0.8, 0.9 and n = 60, 120: Imputation methods R and A; R =

10,000 simulations; Y ~ exp(1); NA = normal approximation, EL. = empirical

TABLE 2

likelihood.
CP(%) L(%) U(%) AL

n p IMP NA EL NA EL NA EL NA EL
60 0.7 R 909 951 79 23 12 26 0.22 0.27
A 919 953 72 23 09 24 0.21 0.26

0.8 R 928 947 6.0 24 1.2 2.8 0.20 0.25

A 934 952 58 22 09 2.5 0.20 0.24

09 R 923 947 6.7 2.8 1.0 2.5 0.19 0.22

A 918 947 73 39 0.8 22 0.18 0.22

120 0.7 R 93.1 948 55 26 14 26 0.16 0.19
A 930 950 59 27 1.1 23 0.15 0.18

0.8 R 925 946 6.2 29 1.3 25 0.15 0.18

A 932 949 58 28 1.1 23 0.14 0.17

09 R 939 948 46 28 1.5 24 0.13 0.16

A 940 949 46 26 14 25 0.13 0.16
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TABLE 3

Confidence interval coverage probability (CP), lower (L) and upper (U) tail error

rates and average lengths (AL) for the median 0% = F_l(%) with p = 0.7, 0.8, 0.9

and n = 60, 120: Imputation methods R and A; R = 10,000 simulations; Y ~

exp(1); NA = normal approximation, EL = empirical likelihood, W = Woodruff.

CP(%) L(%) (%) AL
n p IMP NA EL W NA EL W NAEL W NA EL W
60 0.7 R 873 950 955 40 2.5 24 87 24 22 0.65 0.68 0.70
A 904 958 961 3.9 29 28 57 1.3 1.2 0.63 0.67 0.68

0.8 R 873 953 956 4.1 2.3 23 86 24 2.2 0.60 0.63 0.64

A 910 956 957 3.5 3.0 29 55 15 14 0.58 0.61 0.62

09 R 885 954 954 32 23 23 83 23 22 0.54 0.58 0.58

A 910 950 953 3.3 3.1 29 56 19 1.8 0.54 0.55 0.56

120 0.7 R 88.6 94.5 94.8 3.9 29 2.8 7.5 2.7 2.4 047 0.48 0.48
A 915 952 955 34 29 28 51 19 1.7 045 0.46 0.47

0.8 R 89.6 94.7 949 3.7 2.7 2.7 6.8 2.5 24 0.43 0.43 0.44

A 921 956 95.7 3.3 2.8 2.8 4.7 16 1.5 041 0.42 043

09 R 903 946 94.7 3.1 2.7 2.7 6.6 2.6 2.6 0.39 0.40 0.40

A 917 950 951 3.2 3.1 3.1 51 20 1.9 0.38 0.39 0.39
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