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Abstract

Item nonresponse occurs frequently in sample surveys and other ap-
proaches to data collection. We consider three different methods of im-
putation to fill in the missing values in a random sample {Yi, i = 1, . . . , n}:
(i) mean imputation (M), (ii) random hot deck imputation (R), and (iii)
adjusted random hot deck imputation (A). Asymptotic normality of the
imputed estimators of the mean µ under M , R and A and the distribution
function θ = F (y) and q-th quantile θq, under R and A is established, as-
suming that the values are missing completely at random. This result is used
to obtain normal approximation based confidence intervals on µ, θ and θq.
In the case of θq, Bahadur representations and Woodruff (1952)-type confi-
dence intervals are also obtained under R and A. Empirical log-likelihood
ratios for the three cases are also obtained and shown to be asymptotically
scaled χ21. This result is used to obtain asymptotically correct empirical
likelihood (EL) based confidence intervals on µ, θ and θq. Results of a sim-
ulation study on the finite sample performance of normal approximation
based and EL based confidence intervals are reported. Confidence intervals
obtained here do not require identification flags on the imputed values in the
data file; only the estimated response rate is needed with the imputed data
file. This feature of our method is important because identification flags of-
ten may not be provided in practice with the data file due to confidentiality
reasons.
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1. I N T RODUCT I ON

Item nonresponse occurs frequently in sample surveys and other approaches

to data collection. Reasons for item nonresponse include unwillingness of sam-

pled units to respond on some items, failure of the investigator to gather correct

information on certain items, loss of item values caused by uncontrollable factors,

and so on. Item nonresponse is usually handled by some form of imputation to

fill in missing item values. Brick and Kalton (1996) list the main advantages of

imputation over other methods for handling missing data. Imputation permits

the creation of a general-purpose complete public-use data file with or without

identification flags on the imputed values that can be used for standard analyses,

such as the calculation of item means (or totals), distribution functions and quan-

tiles. Secondly, analyses based on the imputed data file are internally consistent.

Thirdly, imputation retains all the reported data in multivariate analyses.

In this paper, we focus on marginal imputation for each item in the case of

simple random sampling; extension to stratified random sampling with indepen-

dent imputations across strata is also outlined. We study commonly used mean

imputation and random (hot deck) imputation of donor values for each item. We

also study a new method, called adjusted random imputation (Chen, Rao and

Sitter, 2000). We assume missing completely at random (MCAR) mechanism

for each item. Random imputation preserves the distribution of item values and

the resulting imputed estimators of mean, distribution function and quantile are

asymptotically consistent, but it leads to imputation variance which can be a

significant component of the total variance of the estimators if the item response

rate is not high. Mean imputation eliminates the imputation variance, but the

distribution of item values is not preserved because of the spike at the common

imputed value. As a result, the imputed estimators of distribution function and

quantile are inconsistent. Adjusted random imputation eliminates the imputa-
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tion variance and at the same time preserves the distribution of item values,

leading to consistent estimators of distribution functions and quantiles.

Analysts often treat the imputed values as actual values and calculate the

estimates, standard errors and confidence intervals. But this can lead to sig-

nificant underestimation of variance and confidence interval undercoverage due

to ignoring the variability associated with the imputed values. In this paper,

we develop asymptotically valid inferences that take account of imputation. In

particular, we establish the asymptotic normality of the imputed estimators and

construct normal approximation based confidence intervals on item mean, dis-

tribution function and quantile. We also obtain empirical likelihood (EL) based

confidence intervals. In the complete data setting, the original idea of empirical

likelihood dates back to Hartley and Rao (1968) in the context of sample sur-

veys, and Owen (1988, 1990) made a systematic study of the empirical likelihood

(EL) method. EL confidence intervals are range preserving and transformation

respecting and the shape and orientation of EL intervals are determined entirely

by the data, unlike the normal approximation based intervals. However, the EL

method requires modifications in the case of data with imputed values.

We assume simple random sampling from a large population of size N and

negligible sampling fraction n/N . We also focus on a single item Y and associated

mean µ = E(Y ), distribution function θ = F (y) = P (Y ≤ y) for given y ∈ R
and q-th quantile θq = F−1(q), 0 < q < 1. No parametric structure on the

distribution of Y is assumed except that 0 < var(Y ) = σ2 < ∞. The sample

of incomplete data {(Yi, δi); i = 1, 2, . . . , n} may be regarded as an i.i.d. sample

generated from the random vector (Y, δ), where δi = 0 if Yi is missing and δi = 1

otherwise. We assume that Y is missing completely at random (MCAR), i.e.,

P (δ = 1|Y ) = P (δ = 1) = p, 0 < p ≤ 1. In the stratified case, MCAR is assumed

within strata but the probability of response can vary across strata.
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Let r =
∑n

i=1 δi and m = n− r. Denote the set of respondents as sr, the set

of nonrespondents as sm, and the mean of respondents as

Ȳr =
1

r

∑

i∈sr
Yi.

We consider three imputation methods: mean imputation(M), random hot deck

imputation(R) and adjusted random hot deck imputation(A). Let Y
(M)
i , Y

(R)
i

and Y
(A)
i , i ∈ sm, be the imputed values for the missing data based on M, R and

A respectively. Mean imputation uses Ȳr as the imputed value, i.e. Y
(M)
i = Ȳr

for all i ∈ sm. Random hot deck imputation selects a simple random sample of

sizem with replacement from sr and then uses the associated Y -values as donors,

that is, Y
(R)
i = Yj for some j ∈ sr. The adjusted random imputation method,

proposed by Chen, Rao and Sitter (2000), uses Y
(A)
i = Ȳr + (Y

(R)
i − Ȳ (R)

m ) as

imputed values, where Ȳ
(R)
m = 1

m

∑

i∈sm Y
(R)
i . Let

YM,i = δiYi +(1− δi)Y (M)
i , YR,i = δiYi +(1− δi)Y (R)

i , YA,i = δiYi +(1− δi)Y (A)
i ,

i = 1, · · · , n, represent ‘completed’ data based on M, R and A respectively.

In Section 2, we establish the asymptotic normality of the imputed estimators

and construct normal-approximation based confidence intervals for the popula-

tion parameters. Bahadur representationsof quantiles under R and A are also

given as well as Woodruff (1952) type confidence intervals for the quantiles. In

Section 3, empirical likelihood ratio statistics are constructed, limiting distribu-

tions of these statistics are derived, and empirical likelihood based confidence

intervals for the population parameters are obtained. We show that all the confi-

dence intervals have asymptotically correct coverage accuracy. Results of a simu-

lation study on the relative performance of normal approximation based and EL

based confidence intervals are reported in Section 4, as well as Woodruff-based

intervals for the median θ 1
2
. Extension to stratified random sampling is outlined

in Section 5. Proofs are delegated to an Appendix (Section 7).
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2. N ORM AL AP P ROXI M AT I ON

2.1 M ean µ

Estimators for µ after imputation under M,R and A are given by

ȲM =
1

n

n
∑

i=1

YMi
, ȲR =

1

n

n
∑

i=1

YR,i, ȲA =
1

n

n
∑

i=1

YA,i.

It is clear that ȲM = ȲA = Ȳr.

The result on asymptotic normality of the above estimators for µ is summa-

rized in Theorem 2.1. The proof of Theorem 2.1 is given in the Appendix.

T heor em 2 .1 Assume that 0 < p ≤ 1 and 0 < V ar(Y ) = σ2 <∞. Then

√
n(ȲM − µ)

d−→ N(0, p−1σ2), (2.1)

and
√
n(ȲA − µ)

d−→ N(0, p−1σ2), (2.2)

as n→ ∞. Further, assume that there exists an α0 > 0 such that E|Y |2+α0 <∞.
Then, as n→ ∞,

√
n(ȲR − µ)

d−→ N(0, (1 − p+ p−1)σ2). (2.3)

From Theorem 2.1, ȲM , ȲR and ȲA are all consistent estimators of µ. Also,

it follows from (2.1), (2.2) and (2.3) that the asymptotic variances of ȲM and ȲA

are equal and smaller or equal to the asymptotic variance of ȲR. Thus, ȲM and

ȲA have higher asymptotic efficiency (AE) than ȲR.

To obtain consistent estimators of σ2 under different imputations, we examine

the sample variances of the completed data. Under mean imputation, the sample
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variance is

s2M =
1

n− 1

∑

i∈s
(YM,i − ȲM )2

=
1

n− 1

∑

i∈sr
(Yi − Ȳr)2 = pσ2 + op(1).

It follows that under mean imputation p̂−1s2M is a consistent estimator of σ2.

Secondly, under random imputation, the sample variance is

s2R =
1

n− 1

∑

i∈s
(YR,i − ȲR)2.

From the proof of Theorem 3.1, we have

s2R = σ2 + op(1).

It follows that under random imputation s2R is a consistent estimator of σ2.

Finally, under adjusted random imputation, the sample variance is

s2A =
1

n− 1

∑

i∈s
(YA,i − ȲA)2.

From the proof of Theorem 3.1, we have

s2A = σ2 + op(1).

It follows that under adjusted random imputation s2A is a consistent estimator

of σ2. Using Theorem 2.1 and the above estimators of σ2, we obtain normal

approximation based confidence intervals for µ. We assume that the observed

response rate p̂ = r/n =
∑n

i=1 δi/n is reported in the data file. However, we

do not need to know which sampled units have imputed values (i.e. individual

identification flags, δi, are not needed) in the construction of confidence intervals

throughout this paper. It is often the case with survey data that identification

flags are not provided for confidentiality reasons, among others. Throughout this

paper, we take the observed response rate p̂ as the estimator of p. It is a consistent

estimator of p. Let X ∼ N(0, 1) and zα/2 be such that P (|X | ≤ zα/2) = 1 − α,

where zα/2 is the upper α/2-point of N(0, 1). We then have
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(1). CI under mean imputation:

[ȲM − zα/2n−1/2p̂−1/2sM , ȲM + zα/2n
−1/2p̂−1/2sMzα/2].

(2). CI under random imputation:

[ȲR − zα/2n−1/2(1 − p̂+ p̂−1)1/2sR, ȲR + zα/2n
−1/2(1 − p̂+ p̂−1)1/2sR],

and

(3). CI under adjusted random imputation:

[ȲA − zα/2n−1/2p̂−1/2sA, ȲA + zα/2n
−1/2p̂−1/2sA].

The above confidence intervals are asymptotically correct (1 − α)-level intervals

for the mean µ.

2.2 Distr ibution Function θ

We only consider random imputation and adjusted random imputation in esti-

mating θ because the usual estimator of θ under mean imputation is not consis-

tent. The estimators of θ = F (y) under random imputation and adjusted random

imputation are respectively given by

FR(y) =
1

n

n
∑

i=1

I(YR,i ≤ y), (2.4)

and

FA(y) =
1

n

n
∑

i=1

I(YA,i ≤ y). (2.5)

The result on the asymptotic normality associated with (2.4) and (2.5) is

summarized in Theorem 2.2. The proof of Theorem 2.2 is given in the Appendix.
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T heor em 2 .2 Assume that F (y) > 0. Then,

√
n(FR(y) − θ) d−→ N [0, (1 − p+ p−1)F (y){1 − F (y)}], (2.6)

as n→ ∞. Further, assume that there exists an α0 > 0 such that E|Y |2+α0 <∞,
and that the density function f(·) of Y exists and continuous in a neighborhood

of y. Then,
√
n(FA(y) − θ) d−→ N [0, σ2A,F (y)], (2.7)

as n → ∞, where σ2A,F (y) = (1 + p−1 − p)F (y){1 − F (y)} + (1 − p)[f2(y)σ2 +

2f(y)E{Y I(Y ≤ y)} − 2f(y)F (y)µ].

It follows from Theorem 2.2 that both FR(y) and FA(y) are consistent esti-

mators of F (y). To apply Theorem 2.2 for constructing confidence intervals on

θ under A, we need the following result which is proved in the Appendix.

Lem m a 2 .1 Under conditions of Theorem 2.2,

f̂A(y) ≡ FA(y + n−1/2) − FA(y − n−1/2)

2n−1/2
= f(y) + op(1).

Using Theorem 2.2 and Lemma 2.1, we obtain normal approximation based

confidence intervals on θ under R and A: (1). CI under random imputation:

[

FR(y) − zα/2n−1/2(1 − p̂+ p̂−1)1/2σ̂R,F (y),

FR(y) + zα/2n
−1/2(1 − p̂+ p̂−1)1/2σ̂R,F (y)

]

,

where σ̂2R,F (y) = FR(y){1−FR(y)}. (2). CI under adjusted random imputation:

[FA(y) − zα/2n−1/2σ̂A,F (y), FA(y) + zα/2n
−1/2σ̂A,F (y)],

where

σ̂2A,F (y) = (1 + p̂−1 − p̂)FA(y){1 − FA(y)}

+(1 − p̂)[f̂2A(y)σ̂2 + 2f̂A(y)Ê{Y I(Y ≤ y)} − 2f̂A(y)FA(y)ȲA] (2.8)
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with σ̂2 = s2A, and Ê{Y I(Y ≤ y)} = 1
n

∑

i∈s YA,iI(YA,i ≤ y).

Similar to the proof of Theorem 3.1, it can be shown that Ê{Y I(Y ≤ y)} =

E{Y I(Y ≤ y)} + op(1). Combining with Lemma 2.1, it is easy to see that

σ̂2A,F (y) is a consistent estimator of σ2A,F (y). The above confidence intervals are

asymptotically correct (1 − α)-level intervals on θ = F (y). Note that the above

confidence intervals do not require the identification of imputed values on the

data file.

2.3 q-th Quantile θq

We only consider random imputation and adjusted random imputation for esti-

mating θq because the estimator of θq under mean imputation is not consistent.

The estimators of θq = F−1(q) after random imputation and adjusted random

imputation are respectively given by

θ̂(R)
q = infu{FR(u) ≥ q} = F−1

R (q),

and

θ̂(A)
q = infu{FA(u) ≥ q} = F−1

A (q),

where FR(u) and FA(u) are defined in (2.4) and (2.5), respectively.

The result on the asymptotic normality associated with θ̂
(R)
q and θ̂

(A)
q is given

in Theorem 2.3. The proof of Theorem 2.3 is given in the Appendix.

T heor em 2 .3 Suppose that there exists an α0 > 0 such that E|Y |2+α0 < ∞,
and that the density function f(·) of Y exists and continuous in a neighborhood

of θq with f(θq) > 0. Then as n→ ∞,

√
n(θ̂(R)

q − θq) d−→ N(0, σ2R,q), (2.9)
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and
√
n(θ̂(A)

q − θq) d−→ N(0, σ2A,q), (2.10)

where σ2R,q = (1 − p + p−1)q(1 − q)/f2(θq), σ2A,q = σ2A1/f
2(θq), and σ

2
A1 = (1 +

p−1−p)q(1− q) + (1−p)[f2(θq)σ
2 +2f(θq)E{Y I(Y ≤ θq)}−2f(θq)qµ]. Further,

Bahadur representations of θ̂
(R)
q and θ̂

(A)
q are given by

θ̂(R)
q = θq −

FR(θq) − F (θq)

f(θq)
+ op(n−1/2), (2.11)

and

θ̂(A)
q = θq −

FA(θq) − F (θq)

f(θq)
+ op(n−1/2). (2.12)

To apply Theorem 2.3 for constructing confidence intervals on θq, we need

the following result which is proved in the Appendix.

Lem m a 2 .2 Under the conditions of Theorem 2.3,

f̂R(θ̂(R)
q ) =

FR(θ̂
(R)
q + n−1/2) − FR(θ̂

(R)
q − n−1/2)

2n−1/2
= f(θq) + op(1),

f̂A(θ̂(A)
q ) =

FA(θ̂
(A)
q + n−1/2) − FA(θ̂

(A)
q − n−1/2)

2n−1/2
= f(θq) + op(1),

and
1

n

n
∑

i=1

YA,iI(YA,i ≤ θ̂(A)
q ) = E{Y I(Y ≤ θq)} + op(1).

Using Lemma 2.2 and Theorem 2.3, we obtain normal approximation based

confidence intervals on θq:

(1). CI under random imputation:

[

θ̂(R)
q − zα/2n−1/2σ̂R,q, θ̂

(R)
q + zα/2n

−1/2σ̂R,q

]

,

where

σ̂2R,q = (1 − p̂+ p̂−1)q(1 − q)/f̂2R(θ̂(R)
q ).
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From Lemma 2.2, we can see that σ̂2R,q is a consistent estimator of σ2R,q.

(2). CI under adjusted random imputation:

[

θ̂(A)
q − zα/2n−1/2σ̂A,q, θ̂

(A)
q + zα/2n

−1/2σ̂A,q

]

,

where

σ̂2A,q = σ̂2A1,q/f̂
2
A(θ̂(A)

q ).

with

σ̂2A1,q = (1 + p̂−1 − p̂)q(1 − q) + (1 − p̂)
[

f̂2A(θ̂(A)
q )σ̂2

+ 2f̂A(θ̂(A)
q )

{ 1

n

∑

i∈sr
YiI(Yi ≤ θ̂(A)

q ) +
1

n

∑

i∈sm
Y

(A)
i I(Y

(A)
i ≤ θ̂(A)

q )
}

− 2f̂A(θ̂(A)
q )qȲA

]

. (2.13)

From Lemma 2.2, we can see that σ̂2A,q is a consistent estimator of σ2A,q. The

above confidence intervals are asymptotically correct (1 − α)-level intervals on

θq.

Using the ingenious method of Woodruff (1952), different intervals on θq under

R and A can be constructed. An advantage of Woodruff intervals under R is that

the intervals can be obtained from the estimator of F (y) without estimating the

density function f(θq).

(W1). Woodruff-type CI under random imputation:

[F−1
R (q − zα/2n−1/2{q(1 − q)(1 − p̂+ p̂−1)}1/2),

F−1
R (q + zα/2n

−1/2{q(1 − q)(1 − p̂+ p̂−1)}1/2)].

We note that n−1q(1− q)(1− p̂+ p̂−1) is a consistent estimator of the variance of

FR(θq). Denote sn = {q(1 − q)(1 − p̂ + p̂−1)}1/2. We now show that as n → ∞,

the above Woodruff confidence interval is asymptotically correct, i.e.,

P
[

F−1
R (q − zα/2n−1/2sn) ≤ θq ≤ F−1

R (q + zα/2n
−1/2sn)

]

→ 1 − α. (2.14)
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Similar to the proof of Lemma 2.1 in the Appendix, we can show that

FR(θq + ǫ1n) − FR(θq − ǫ2n) = f(θq)(ǫ1n + ǫ2n) + op(n
−1/2)

for any ǫjn = Op(n−1/2), j = 1, 2. Then by Theorem 2.3 and following the proof

of Theorem 4 in Francisco and Fuller(1991), we have

F−1
R (q) ± n−1/2zα/2sn{f(θq)}−1 = F−1

R (q ± n−1/2zα/2sn) + op(n
−1/2).

Therefore, to prove (2.14), we only need to show that

P
[

F−1
R (q) − zα/2n−1/2sn{f(θq)}−1 ≤ θq ≤ F−1

R (q) + zα/2n
−1/2sn{f(θq)}−1

]

→ 1 − α,

which is implied by Theorem 2.3.

(W2). Woodruff-type CI under adjusted random imputation:

[

F−1
A (q − zα/2n−1/2σ̂A1,q), F

−1
A (q + zα/2n

−1/2σ̂A1,q)
]

.

We note that n−1σ̂2A1,q above is a consistent estimator of the variance of FA(θq),

but it depends on f̂A(θ̂
(A)
q ). Similar to above derivations, we can also show

that the above Woodruff intervals have the asymptotically correct (1 − α)-level

coverage probability.

Chen and Shao (1999) also obtained normal approximation intervals for the

mean and quantiles and Woodruff intervals for quantiles under random imputa-

tion. However, they appealed to a Lemma in Schenker and Welsch (1988) that

requires a stronger regularity condition than the condition 2 in Lemma 7.1 of the

Appendix (Chen and Rao, 2006). We verified condition 2 explicitly in each case.
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3. E M P I RI CAL LI KE LI H OOD CON FI DE N CE I N T E RVALS

3.1 M ean µ

Let Zm,M,i(µ) = YM,i −µ, Zm,R,i(µ) = YR,i −µ, and Zm,A,i(µ) = YA,i −µ. Then

the empirical log-likelihood ratios for µ under the three different imputations

M,R and A are defined respectively as

ℓm,M,n(µ) = −2 max
∑n

i=1
p
( m,M )
i Zm,M,i(µ)=0,

∑n

i=1
p
( m,M )
i =1

n
∑

i=1

log(np
(m,M)
i ),

ℓm,R,n(µ) = −2 max
∑n

i=1
p
( m,R )
i Zm,R,i(µ)=0,

∑n

i=1
p
( m,R)
i =1

n
∑

i=1

log(np
(m,R)
i ),

and

ℓm,A,n(µ) = −2 max
∑n

i=1
p
( m,A)
i Zm,A,i(µ)=0,

∑n

i=1
p
( m,A)
i =1

n
∑

i=1

log(np
(m,A)
i ).

Note that the empirical likelihood ratios are based on the completed data YM,i, YR,i

or YA,i, i = 1, 2, . . . , n. It can be shown, by using the Lagrange multiplier method,

that

ℓm,M,n(µ) = 2
n
∑

i=1

log {1 + λ(m,M)
n Zm,M,i(µ)},

where λ
(m,M)
n is the solution of the equation

1

n

n
∑

i=1

Zm,M,i(µ)

1 + λ
(m,M)
n Zm,M,i(µ)

= 0,

ℓm,R,n(µ) = 2
n
∑

i=1

log {1 + λ(m,R)
n Zm,R,i(µ)},

where λ
(m,R)
n is the solution of the equation

1

n

n
∑

i=1

Zm,R,i(µ)

1 + λ
(m,R)
n Zm,R,i(µ)

= 0,

and

ℓm,A,n(µ) = 2
n
∑

i=1

log {1 + λ(m,A)
n Zm,A,i(µ)},
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where λ
(m,A)
n is the solution of the equation

1

n

n
∑

i=1

Zm,A,i(µ)

1 + λ
(m,A)
n Zm,A,i(µ)

= 0.

Results on the asymptotic distribution of the above empirical log-likelihood

ratios for µ are summarized in Theorem 3.1. The proof of Theorem 3.1 is given

in the Appendix.

T heor em 3 .1 Under the conditions that 0 < p ≤ 1 and 0 < Var(Y ) <∞,

ℓm,M,n(µ)
d−→ p−2χ21 (3.1)

as n→ ∞. Further, assume that there exists an α0 > 0 such that E|Y |2+α0 <∞.
Then, as n→ ∞,

ℓm,R,n(µ)
d−→ (1 − p+ p−1)χ21 (3.2)

and

ℓm,A,n(µ)
d−→ p−1χ21. (3.3)

Using Theorem 3.1, asymptotically correct (1 − α)-level empirical likelihood

based confidence intervals on µ are obtained as follows. Let χ21,α be the upper

α-point of χ21 variable, i.e. P (χ21 > χ
2
1,α) = α. Then

(1). CI under mean imputation:

{µ̃ : p̂2ℓm,M,n(µ̃) ≤ χ21,α},

(2). CI under random imputation:

{µ̃ : (1 − p̂+ p̂−1)−1ℓm,R,n(µ̃) ≤ χ21,α},

and
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(3). CI under adjusted random imputation:

{µ̃ : p̂ ℓm,A,n(µ̃) ≤ χ21,α}.

It follows from (1)–(3) that the EL intervals for µ depend only on the completed

data and the response rate p̂ reported in the data file. Standard EL methods

for the complete response case can be applied to the data file to calculate the

empirical log-likelihood ratios and hence EL intervals using (1)–(3) above.

3.2 Distr ibution Function θ

Let Zd,R,i(θ) = I(YR,i ≤ y)−θ and Zd,A,i(θ) = I(YA,i ≤ y)−θ. Then the empirical

log-likelihood ratios for θ under imputations R and A are defined respectively as

ℓd,R,n(θ) = −2 max
∑n

i=1
p
( d,R)
i

Zd,R,i(θ)=0,
∑n

i=1
p
( d,R)
i

=1

n
∑

i=1

log(np
(d,R)
i ),

and

ℓd,A,n(θ) = −2 max
∑n

i=1
p
( d,A)
i Zd,A,i(θ)=0,

∑n

i=1
p
( d,A)
i =1

n
∑

i=1

log(np
(d,A)
i ).

Again, the empirical likelihood ratios depend only on the completed data. It can

be shown, by using the Lagrange multiplier method, that

ℓd,R,n(θ) = 2
n
∑

i=1

log {1 + λ(d,R)
n Zd,R,i(θ)},

where λ
(d,R)
n is the solution of the equation

1

n

n
∑

i=1

Zd,R,i(θ)

1 + λ
(d,R)
n Zd,R,i(θ)

= 0,

and

ℓd,A,n(θ) = 2
n
∑

i=1

log {1 + λ(d,A)
n Zd,A,i(θ)},

where λ
(d,A)
n is the solution of the equation

1

n

n
∑

i=1

Zd,A,i(θ)

1 + λ
(d,A)
n Zd,A,i(θ)

= 0.
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Results on the asymptotic distribution of the above empirical log-likelihood ratios

for θ are summarized in Theorem 3.2. The proof of Theorem 3.2 is given in the

Appendix.

T heor em 3 .2 Assume that F (y) > 0, and that there exists an α0 > 0 such that

E|Y |2+α0 <∞. Then as n→ ∞,

ℓd,R,n(θ)
d−→ (1 − p+ p−1)χ21 (3.4)

and

ℓd,A,n(θ)
d−→ [σ2A,F (y)/{F (y)(1 − F (y))}]χ21, (3.5)

where σ2A,F (y) is defined in Theorem 2.2.

Using Theorem 3.2, asymptotically correct (1 − α)-level empirical likelihood

based confidence intervals on θ are obtained as follows:

(1). CI under random imputation:

{θ̃ : (1 − p̂+ p̂−1)−1ℓd,R,n(θ̃) ≤ χ21,α},

and

(2). CI under adjusted random imputation:

{θ̃ : [F̂ (y){1 − F̂ (y)}/σ̂2A,F (y)]ℓd,A,n(θ̃) ≤ χ21,α},

where F̂ (y) = FA(y) and σ̂2A is the same as in (2.8) so that they are consistent

estimators of the corresponding population quantities.

It follows from (1) and (2) that the EL intervals for F (y) depend only on the

completed data and the response rate p̂.
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3.3 q-th Quantile θq

Let Zq,R,i(θq) = I(YR,i ≤ θq) − q and Zq,A,i(θq) = I(YA,i ≤ θq) − q. Then the

empirical log-likelihood ratios for θ̃q under imputations R and A are defined

respectively as

ℓq,R,n(θq) = −2 max
∑n

i=1
p
( q,R)
i

Zq,R,i(θq)=0,
∑n

i=1
p
( q,R)
i

=1

n
∑

i=1

log(np
(q,R)
i ),

and

ℓq,A,n(θq) = −2 max
∑n

i=1
p
( q,A)
i

Zq,A,i(θq)=0,
∑n

i=1
p
( q,A)
i

=1

n
∑

i=1

log(np
(q,A)
i ).

Again, the empirical likelihood ratios depend only on the completed data. It can

be shown, by using the Lagrange multiplier method, that

ℓq,R,n(θq) = 2
n
∑

i=1

log{1 + λ(q,R)
n Zq,R,i(θq)},

where λ
(q,R)
n is the solution of the equation

1

n

n
∑

i=1

Zq,R,i(θq)

1 + λ
(q,R)
n Zq,R,i(θq)

= 0,

and

ℓq,A,n(θq) = 2
n
∑

i=1

log{1 + λ(q,A)
n Zq,A,i(θq)},

where λ
(q,A)
n is the solution of the equation

1

n

n
∑

i=1

Zq,A,i(θq)

1 + λ
(q,A)
n Zq,A,i(θq)

= 0.

Results on the asymptotic distribution of the above empirical log-likelihood

ratios for θq are summarized in Theorem 3.3. The proof of Theorem 3.3 is given

in the Appendix.
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T heor em 3 .3 Under conditions of Theorem 2.3, as n→ ∞,

ℓq,R,n(θq)
d−→ (1 − p+ p−1)χ21, (3.6)

and

ℓq,A,n(θq)
d−→ [σ2A1,q{q(1 − q)}−1]χ21, (3.7)

where σ2A1,q is defined in Theorem 2.3.

Using Theorem 3.3, asymptotically correct (1 − α)–level empirical likelihood

based confidence intervals on θq are obtained as follows:

(1). CI under random imputation:

{θ̃q : (1 − p̂+ p̂−1)−1ℓq,R,n(θ̃q) ≤ χ21,α},

and

(2). CI under adjusted random imputation:

{θ̃q : {q(1 − q)/σ̂2A1,q}ℓq,A,n(θ̃q) ≤ χ21,α},

where σ̂2A1,q is the same as in (2.13), which is a consistent estimator of σ2A1,q. It

follows from (1) and (2) that the EL intervals for θq depend only on the com-

pleted data and the response rate p̂.

4. SI M ULAT I ON ST UDY

We conducted a small simulation study on the finite sample performance

of normal approximation and empirical likelihood based confidence intervals on

the mean µ = E(Y ), distribution function θ = F (y) for fixed y and quantile

θq = F−1(q). Random samples {Yi, δi; i = 1, . . . , n} were generated from the

standard exponential distribution with mean 1 and three cases of uniform re-

sponse probabilities, p = 0.7, 0.8, 0.9.
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For each of the three cases, we generated 10, 000 random samples of incom-

plete data {Yi, δi, i = 1, · · · , n} for n = 60 and 120. For nominal confidence level

of 95%, using the simulated samples, we evaluated the coverage probability (CP),

lower tail error rate (L), upper tail error rate (U) and the average length of the

interval (AL) of the normal approximation based (NA) and empirical likelihood

based (EL) intervals for the three imputation methods: mean imputation (M),

random hot deck imputation (R) and adjusted random hot deck imputation (A).

In the case of quantiles, we denote the Woodruff type confidence intervals as W.

Table 1 reports the simulation results for the mean µ = E(Y ). It is seen

from Table 1 that EL provides more balanced error rates (L and U) than NA

under the three different imputation methods M, R and A. In the case of NA,

L is significantly lower and U is significantly higher than the nominal 2.5%. For

example, for n = 60, p = 0.7 and mean imputation (M), L = 1.3% and U = 6.0%

for NA compared to L = 3.0% and U = 3.4% for EL. The imbalance in error rates

decreases as n increases. Under M and R, the performance of EL in terms of CP

is slightly better than NA, but NA seems to be slightly better than EL under A.

In terms of average length (AL), M and A perform similarly whereas R leads to

larger AL, as expected. Also, NA performs slightly better than EL in terms of

AL but at the expense of undercoverage.

Table 2 reports the simulation results for the distribution function θ = F (y) =

0.86 under R and A; note that M is not suitable for θ and the quantile θq since

it leads to asymptotically inconsistent imputed estimators. It is clear from Table

2 that EL outperforms NA in terms of CP, with values closer to nominal 95%

even for n = 60, and balanced error rates L and U. For example, with n = 60,

p = 0.7 and random imputation R, CP = 90.9%, L = 7.9% and U = 1.2% for NA

compared to CP = 95.1%, L = 2.3% and U = 2.6% for EL. Again, NA is better

than EL in terms of AL but at the expense of undercoverage.
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Table 3 reports the simulation results for the median θ 1
2

= F−1(12). Here NA

leads to severe undercoverage whereas the Woodruff (W) method of EL leads to

CP closer to nominal 95%. For example, with n = 60, p = 0.7, and random

imputation (R), CP = 87.3% for NA compared to CP = 95.0% for EL, and CP

= 95.5% for W. Also, EL and W provide similar results in terms of CP, L, U

and AL, although AL is slightly smaller for EL. Our results suggest that NA is

not recommended for quantiles, and either EL or W should be used in practice.

However, EL provides a unified method for all the parameters µ, θ and θq whereas

W is tailor-made for θq.

5. ST RAT I FI E D RAN DOM SAM P LI N G

5.1 N or mal appr oximation inter vals

Suppose that the population is divided into H strata with known relative sizes

Wh, h = 1, . . . , H;
∑H

h=1Wh = 1. Independent simple random samples of sizes

nh, h = 1, . . . ,H are drawn from the strata, and the strata sampling fractions,

nh/Nh, are assumed to be negligible. We express µ, θ and θq as µ = ΣWhµh,

F (y) = ΣWhFh(y) and θq = F−1(q). We regard the sample of incomplete data in

stratum h, {(yhi, δhi), i = 1, . . . , nh} as an i.i.d. sample generated from the ran-

dom vector (Yh, δh). Put n =
∑

h nh. We assume MCAR mechanism within each

stratum, i.e., P (δh = 1|Yh) = P (δh = 1) = ph, 0 < ph ≤ 1. Imputations M, R

or A are performed separately in each stratum, and we have ȲM = ΣWhȲMh,

ȲR = ΣWhȲRh and ȲA = ΣWhȲAh as estimators of µ. We obtain an extension

of Theorem 2.1 by letting nh → ∞ for each h with fixed H and assuming that

n/nh → λh(0 < λh < ∞) and that 0 < var(Yh) = σ2h < ∞. We assume that

the imputed data file provides stratum identifiers and stratum response rates

p̂h = rh/nh. Identification flags on the imputed values are not needed.
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Normal approximation based (1 − α)–level intervals on µ are given by

ȲM ± zα/2[ΣW 2
hn

−1
h p̂

−1
h s

2
Mh]1/2, ȲR ± zα/2[ΣW 2

hn
−1
h (1 − p̂h + p̂−1

h )s2Rh]1/2 and

ȲA ± zα/2[ΣW 2
hn

−1
h p̂

−1
h s

2
Ah]1/2 under M, R and A respectively, using obvious ex-

tension of the notation for simple random sampling.

Estimators of F (y) under R and A are given by FR(y) = ΣWhFRh(y) and

FA(y) = ΣWhFAh(y). Normal approximation based (1 − α)-level intervals

are given by FR(y) ± zα/2[ΣW
2
hn

−1
h (1 − p̂h + p̂−1

n )σ̂2R,Fh
(y)]1/2 and FA(y)±

zα/2[ΣW
2
hn

−1
h σ̂

2
A,Fh

(y)]1/2 under R and A respectively, using obvious extension of

previous notation for simple random sampling. Specifically, σ̂2R,Fh
is the estimator

of Fh(y){1 − Fh(y)}.

We focus only on the Woodruff intervals for quantiles under R and A because

normal approximation based intervals for quantiles did not perform well under

simple random sampling in our simulation study (Section 4). The (1 − α)–level

Woodruff intervals on θq under R and A are given by

[

F−1
R

(

q − zα/2{ΣW 2
hn

−1
h (1 − p̂h + p̂−1

h )σ̂2R,Fh
(θ̂q)}1/2

)

,

F−1
R

(

q + zα/2{ΣW 2
hn

−1
h (1 − p̂h + p̂−1

h )σ̂2R,Fh
(θ̂q)}1/2

) ]

and

[

F−1
A

(

q − zα/2{ΣW 2
hn

−1
h σ̂

2
A1,h,q}1/2

)

, F−1
A

(

q + zα/2{ΣW 2
hn

−1
h σ̂

2
A1,h,q}1/2

)]

respectively, using obvious extension of previous notation for simple random sam-

pling.

5.2 E L inter vals

We now obtain EL intervals under stratified random sampling. For EL based

CI on µ, under M , we maximize ΣhΣi log(nhp
(m,M)
hi ) subject to Σip

(m,M)
hi = 1,
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h = 1, . . . , H and ΣhWhΣip
(m,M)
hi YM,hi = µ, leading to empirical log-likelihood

ratio

ℓm,M,n(µ) = −2 max
phi,1≤h≤H,1≤i≤nh

ΣhΣi log(nhp
(m,M)
hi )

= 2ΣhΣi log{1 +mht(µ)(YM,hi − ψm,M,h(µ))},

where n = (n1, . . . , nH)′,mh = nWhn
−1
h , and ψm,M,h(µ), t(µ) satisfy







∑

i
YM,hi−ψm,M,h(µ)

1+mht(µ)(YM,hi−ψm,M,h(µ))
= 0, 1 ≤ h ≤ H,

∑

hWhψm,M,h(µ) = µ.
(5.1)

Zhong and Rao (2000) and Wu (2004) have given algorithms for evaluating

empirical log-likelihood ratio for the complete data case. Here the same algo-

rithms can be applied to the imputed data file to calculate ℓm,M,n(µ). Similarly,

ℓm,R,n(µ) and ℓm,A,n(µ) are obtained. It can be shown, under the assumption

that λ̂h = n/nh → λh(0 < λh < ∞), that ℓm,M,n(µ), ℓm,R,n(µ) and ℓm,A,n(µ)

respectively have limiting distributions

∑

h

W 2
hλhp

−1
h σ

2
h(

∑

h

W 2
hλhσ

2
M,h)−1χ21,

∑

h

W 2
hλh(1−ph+p−1

h )σ2h(
∑

h

W 2
hλhσ

2
R,h)−1χ21

and
∑

hW
2
hλhp

−1
h σ

2
h(

∑

hW
2
hλhσ

2
A,h)−1χ21 respectively, where σ2M,h = phσ

2
h+(µh−

ψm,M,h(µ))2, σ2R,h = σ2h + (µh − ψm,R,h(µ))2 and σ2A,h = σ2h + (µh − ψm,A,h(µ))2.

Thus EL based (1 − α)–level intervals on µ are given by

{

µ̃ :

(
∑

h

W 2
h λ̂hp̂

−1
h s

2
Mh

)−1[∑

h

W 2
h λ̂hσ̂

2
M,h(µ̃)

]

ℓm,M,n(µ̃) ≤ χ21,α
}

,

{

µ̃ :

(
∑

h

W 2
h λ̂h(1 − p̂h + p̂−1

h )s2Rh

)−1[∑

h

W 2
h λ̂hσ̂

2
R,h(µ̃)

]

ℓm,R,n(µ̃) ≤ χ21,α
}

and

{

µ̃ :

(
∑

h

W 2
h λ̂hp̂

−1
h s

2
Ah

)−1[∑

h

W 2
h λ̂hσ̂

2
A,h(µ̃)

]

ℓm,A,n(µ̃) ≤ χ21,α
}

underM, R and A respectively, using obvious extension of the notation for simple

random sampling, where σ̂2M,h(µ) = p̂hs
2
Mh + (ȲMh − ψm,M,h(µ))2, σ̂2R,h(µ) =

s2Rh + (ȲRh − ψM,R,h(µ))2 and σ̂2A,h(µ) = s2Ah + (ȲAh − ψm,A,h(µ)2.
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We now turn to EL intervals on θ = F (y) under R and A. Under R, the em-

pirical log-likelihood ratio ℓd,R,n(θ) = −2 maxphi,1≤h≤H,1≤i≤nh
ΣhΣi log(nhp

(d,R)
hi )

subject to Σip
(d,R)
hi = 1, h = 1, . . . , H and ΣhWhΣip

(d,R)
hi I(YR,hi ≤ y) = θ.

ℓd,A,n(θ) is obtained using I(YA,hi ≤ y) similarly. The EL based (1 − α)–level

intervals on θ are given by
{

θ̃ :

(
∑

h

W 2
h λ̂h(1 − p̂h + p̂−1

h )σ̂2R,Fh
(y)

)−1

×
[
∑

h

W 2
h λ̂h(σ̂2R,Fh

(y) + ∆̂2
R,h(θ̃))

]

ℓd,R,n(θ̃) ≤ χ21,α
}

and
{

θ̃ :

(
∑

h

W 2
h λ̂hσ̂

2
A,Fh

(y)

)−1[∑

h

W 2
h λ̂h(σ̂20,A,Fh

(y) + ∆̂2
A,h(θ̃))

]

ℓd,A,n(θ̃) ≤ χ21,α
}

under R and A respectively, using obvious extension of the notation for simple

random sampling, where σ̂20,A,Fh
(y) = FAh(y){1−FAh(y)} , ∆̂R,h(θ̃) = FRh(y) −

ψd,R,h(θ̃) and ∆̂A,h(θ̃) = FAh(y) − ψd,A,h(θ̃) respectively.

Finally, we investigate the EL based CI on θq = F−1(q). Under R, the empir-

ical log-likelihood ratio ℓq,R,n(θq) = −2 maxphi,1≤h≤H,1≤i≤nh
ΣhΣi log(nhp

(q,R)
hi )

subject to Σip
(q,R)
hi = 1, h = 1, . . . , H and ΣhWhΣip

(q,R)
hi Zq,R,hiI(YR,hi ≤ θq) = q.

ℓq,A,n(θq) is obtained similarly. The EL based (1 − α)–level intervals on θq are

given by
{

θ̃q :

(
∑

h

W 2
h λ̂h(1 − p̂h + p̂−1

h )q(1 − q)
)−1

×
[
∑

h

W 2
h λ̂h(q(1 − q) + ∆̂2

q,R,h(θ̃q))

]

ℓq,R,n(θ̃q) ≤ χ21,α
}

and
{

θ̃q :

(
∑

h

W 2
h λ̂hσ̂

2
A1,h,q

)−1[∑

h

W 2
h λ̂h(q(1 − q) + ∆̂2

q,A,h(θ̃q))

]

ℓq,A,n(θ̃q) ≤ χ21,α
}

under R and A respectively, using obvious extension of the notation for simple

random sampling, where ∆̂q,R,h(θ̃q) = FRh(θ̃q) − ψq,R,h(θ̃q) and ∆̂q,A,h(θ̃q) =

FAh(θ̃q) − ψq,A,h(θ̃q) respectively.
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6. SUM M ARY AN D CON CLUSI ON S

In this paper we considered three different methods of imputation to fill in

the missing values in a random sample {Yi, i = 1, . . . , n}: mean imputation

(M), random hot deck imputation (R) and adjusted random hot deck imputation

(A). Assuming uniform response probability p, we have obtained asymptotically

correct normal approximation (NA) based confidence intervals on the mean µ,

distribution function θ = F (y) and q-th quantile θq = F−1(q). Asymptotically

correct empirical likelihood (EL) intervals are also obtained by first showing that

the empirical log-likelihood ratios are asymptotically scaled χ21 variables. Both

NA and EL intervals do not require identification flags on the imputed values in

the data file; only the estimated response rate p̂ is needed with the imputed data

file. Simulation results indicated that EL performs better than NA in providing

balanced lower (L) and upper (U) tail error rates. Also, NA lead to severe

undercoverage in the case of median (θ 1
2
) unlike EL and the method of Woodruff

(1952).

If the objective is to estimate different parameters µ, θ and θq from the im-

puted data file, then mean imputation (M) is not suitable and normal approxi-

mation (NA) leads to severe undercoverage in the case of θq and unbalanced tail

error rates in the case of µ and θ, unlike EL. We recommend the use of random

(R) or adjusted random (A) imputation and EL intervals for all the parameters.

Extensions to complex sampling designs, based on the pseudo-EL approach of

Chen and Sitter (1999), and multiple imputation classes are under investigation.
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7. AP P E N DI X: P ROOFS

The following lemma of Chen and Rao (2006) will be used in the proofs of

main results.

Lem m a 7 .1 Let Un, Vn be two sequences of random variables and Bn be a σ-

algebra. Assume that: 1. There exists σ1n > 0 such that

σ−1
1n Vn

d−→ N(0, 1)

as n → ∞, and Vn is Bn measurable. 2. E[Un|Bn] = 0 and Var(Un|Bn) = σ22n

such that

sup
t

|P (σ−1
2n Un ≤ t|Bn) − Φ(t)| = op(1),

where Φ(·) is the distribution function of the standard normal random variable.

3. γ2n = σ21n/σ
2
2n = γ2 + op(1). Then, as n→ ∞,

Un + Vn
√

σ21n + σ22n

d−→ N(0, 1).

Pr oof of T heor em 2 .1 . Noting that ȲM = ȲA = Ȳr, it follows that

√
n(ȲM − µ) =

√
n(ȲA − µ) =

√
n
{1

r

∑

i∈sr
(Yi − µ)

}

=
√
n
{1

r

n
∑

i=1

δi(Yi − µ)
}

=
n

∑n
i=1 δi

{ 1√
n

n
∑

i=1

δi(Yi − µ)
}

= {p+ op(1)}−1
{ 1√
n

n
∑

i=1

δi(Yi − µ)
}

.

So from the Central Limit Theorem for i.i.d. random variables and MCAR

assumption, we have (2.1) and (2.2), noting that E(δi|Yi) = E(δi) = p and

V (δi|Yi) = E(δi|Yi)− [E(δi|Yi)]2 = p− p2. Let Vn =
√
n(ȲM −µ), Un =

√
n(ȲR−

ȲM ) and Bn = σ((δi, Yi), i = 1, · · · , n). So Vn is Bn measurable, and
√
n(ȲR−µ) =

Vn + Un. If we let σ21n = p−1σ2, then from (2.1),

σ−1
1n Vn

d−→ N(0, 1). (7.1)

25



We now verify condition 2 in Lemma 7.1. It can be seen, for i ∈ sm, that

E(Y
(R)
i |Bn) = Ȳr,Var(Y

(R)
i |Bn) =

1

r

∑

i∈sr
(Yi − Ȳr)2.

It follows that

E(ȲR|Bn) = Ȳr,Var(ȲR|Bn) =
n− r
n2

{

1

r

∑

i∈sr
(Yi − Ȳr)2

}

.

Let σ22n = n−r
n

{

1
r

∑

i∈sr(Yi − Ȳr)2
}

. Then

E(Un|Bn) = 0,Var(Un|Bn) = σ22n.

Similar to the proof of (2.1), it can be shown that σ22n = (1 − p)σ2 + op(1).

Further,

∑n
i=1E(|YR,i|2+α0 |Bn)

{∑n
i=1E(Y 2

R,i|Bn)}(2+α0)/2

=
n−1−α0

2 r−1 ∑n
i=1

∑

j∈sr |δiYi + (1 − δi)Yj|2+α0

{n−1r−1
∑n

i=1

∑

j∈sr(δiYi + (1 − δi)Yj)2}(2+α0)/2
. (7.2)

It is clear that

n−1r−1
n
∑

i=1

∑

j∈sr
(δiYi + (1 − δi)Yj)2 =

1

r

n
∑

i=1

δiY
2
i = σ2 + µ2 + op(1).

On the other hand, there is a constant C0 depending only on α0 such that

n−1r−1
n
∑

i=1

∑

j∈sr
|δiYi + (1 − δi)Yj |2+α0

≤ C0n
−1r−1

n
∑

i=1

∑

j∈sr
(|Yi|2+α0 + |Yj |2+α0) = 2C0E|Y |2+α0 + op(1).

It follows that the right hand of (7.2) converges to 0 in probability. So by Berry-

Esseen’s Central Limit Theorem, supt |P (σ−1
2n Un ≤ t|Bn) −Φ(t)| = op(1). Hence,

(2.3) follows from Lemma 7.1, and the proof of Theorem 2.1 is complete.

Pr oof of T heor em 2 .2 . Denote F̄r(y) = 1
r

∑

i∈sr I(Yi ≤ y). Then
√
n(F̄r(y)−

θ) = n
r

1√
n

∑n
i=1 δi{I(Yi ≤ y)−θ}. So from the Central Limit Theorem and MCAR
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assumption, we have

[p−1F (y){1 − F (y)}]−1/2√n(F̄r(y) − θ) d−→ N(0, 1). (7.3)

Let Vn =
√
n(F̄r(y) − θ), Un =

√
n(F̄R(y) − F̄r(y)) and Bn = σ((δi, Yi), i =

1, · · · , n). So Vn is Bn measurable, and
√
n(F̄R(y) − θ) = Vn +Un. We note that

F̄R(y) =
1

n

n
∑

i=1

I(YR,i ≤ y, δi = 1) +
1

n

n
∑

i=1

I(YR,i ≤ y, δi = 0)

=
r

n
F̄r(y) +

1

n

∑

i∈sm
I(Y

(R)
i ≤ y).

So

Un =
1√
n

∑

i∈sm
{I(Y (R)

i ≤ y) − F̄r(y)}

=
1√
n

n
∑

i=1

(1 − δi){I(Y (R)
i ≤ y) − F̄r(y)}.

We now verify condition 2 in Lemma 7.1. It can be seen, for i ∈ sm, that

E(I(Y
(R)
i ≤ y)|Bn) = F̄r(y),Var(I(Y

(R)
i ≤ y)|Bn) = F̄r(y){1 − F̄r(y)}.

It follows that

E(Un|Bn) = 0,Var(Un|Bn) =
n− r
n

[

F̄r(y){1 − F̄r(y)}
]

.

Let

σ22n =
n− r
n

[

F̄r(y){1 − F̄r(y)}
]

.

Then Var(Un|Bn) = σ22n. It can be shown that

σ22n = (1 − p)F (y){1 − F (y)} + op(1).

So by Berry-Esseen’s Central Limit Theorem, supt |P (σ−1
2n Un ≤ t|Bn) − Φ(t)| =

op(1). Hence, (2.6) follows from Lemma 7.1. Denote F ∗
m(y) = 1

m

∑

i∈sm I(Y
(R)
i ≤

y) and an = Ȳ
(R)
m − Ȳr. Similar to the proof of Lemma 1 in Chen and Shao

(1999), it can be shown that

{F ∗
m(y + an) − F ∗

m(y)} − {F̄r(y + an) − F̄r(y)} = op(n−1/2), (7.4)
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and

{F̄r(y + an) − F̄r(y)} − {F (y + an) − F (y)} = op(n−1/2). (7.5)

Thus, from (7.4), (7.5) and the conditions in Theorem 2.2,

FA(y) =
r

n
F̄r(y) +

m

n
F ∗
m(y + an)

=
r

n
F̄r(y) +

m

n
F ∗
m(y) +

m

n
{F ∗

m(y + an) − F ∗
m(y)}

=
r

n
F̄r(y) +

m

n
F ∗
m(y) +

m

n
{F̄r(y + an) − F̄r(y) + op(n−1/2)}

=
r

n
F̄r(y) +

m

n
F ∗
m(y) +

m

n
{F (y + an) − F (y) + op(n

−1/2)}

=
r

n
F̄r(y) +

m

n
F ∗
m(y) +

m

n
{f(y)an + op(n−1/2)}

= { r
n
F̄r(y) −

m

n
f(y)Ȳr} +

m

n
{F ∗

m(y) + f(y)Ȳ (R)
m } + op(n

−1/2)

= F̄r(y) +
m

n
[F ∗

m(y) + f(y)Ȳ (R)
m − {F̄r(y) + f(y)Ȳr}]

+op(n
−1/2). (7.6)

To prove (2.7), let Vn =
√
n(F̄r(y)− θ), Un =

√
nm

n [F ∗
m(y) + f(y)Ȳ

(R)
m −{F̄r(y) +

f(y)Ȳr}] and Bn = σ((δi, Yi), i = 1, · · · , n). So Vn is Bn measurable, and
√
n(F̄A(y) − θ) = Vn + Un. We now verify condition 2 in Lemma 7.1. It can

be seen, for i ∈ sm, that

E({I(Y (R)
i ≤ y) + f(y)Y

(R)
i }|Bn) = F̄r(y) + f(y)Ȳr,

Var({I(Y (R)
i ≤ y) + f(y)Y

(R)
i }|Bn)

=
1

r

∑

i∈sr
{I(Yi ≤ y) + f(y)Yi}2 − {F̄r(y) + f(y)Ȳr}2.

Thus, E(Un|Bn) = 0, and

Var(Un|Bn) = n · m
2

n2
· 1

m
Var

(

{I(Y (R)
i ≤ y) + f(y)Y

(R)
i }|Bn

)

=
m

n

[

1

r

∑

i∈sr
{I(Yi ≤ y) + f(y)Yi}2 − {F̄r(y) + f(y)Ȳr}2

]

.
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Let

σ22n =
m

n

[

1

r

∑

i∈sr
{I(Yi ≤ y) + f(y)Yi}2 − {F̄r(y) + f(y)Ȳr}2

]

.

Then Var(Un|Bn) = σ22n. It can be shown that

σ22n = (1−p)
{

F (y)−F 2(y)+2f(y)E(Y I(Y ≤ y))−2f(y)F (y)µ+f2(y)σ2
}

+op(1).

So by Berry-Esseen’s Central Limit Theorem, supt |P (σ−1
2n Un ≤ t|Bn) − Φ(t)| =

op(1). Hence, (2.7) follows from Lemma 7.1, and the proof of Theorem 2.2 is

complete. To prove Theorem 2.3, we need the following result, which can be

proved similar to the proof of Theorem 2.2.

Lem m a 7 .2 Assume that f(θq) > 0, then for fixed u ∈ R, as n→ ∞,

√
n(FR(θq+n

−1/2σR,qu)−F (θq+n
−1/2σR,qu))

d−→ N(0, (1−p+p−1)F (θq){1−F (θq)}).

Further, assume that there exists an α0 > 0 such that E|Y |2+α0 < ∞, and that
f(·) exists and continuous in a neighborhood of θq. Then as n→ ∞,

√
n(FA(θq + n−1/2σA,qu) − F (θq + n−1/2σA,qu))

d−→ N(0, σ2A1,q),

where σR,q, σA,q and σA1,q are defined in Theorem 2.3.

Pr oof of T heor em 2 .3 . Note that q = F (θq). For fixed u ∈ R, we have

P

{√
n(θ̂

(R)
q − θq)
σR,q

≤ u
}

= P (θ̂(R)
q ≤ θq + n−1/2σR,qu)

= P{q ≤ FR(θq + n−1/2σR,qu)}

= P

[√
n{FA(θq + n−1/2σR,qu) − F (θq + n−1/2σR,qu)}

≥
√
n{F (θq) − F (θq + n−1/2σR,qu)}

]

= P

[√
n{FA(θq + n−1/2σR,qu) − F (θq + n−1/2σR,qu)} ≥ −σR,qf(θq)u+ o(1)

]

= P

[√
n{FA(θq + n−1/2σR,qu) − F (θq + n−1/2σR,qu)}

−σR,qf(θq)
≤ u+ o(1)

]

.
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So by Lemma 7.2, we have (2.9). Similarly, we can prove (2.10). Results (2.11)

and (2.12) in Theorem 2.3 can be proved similar to the proof of Theorem 2 in

Chen and Shao (1999). The proof of Theorem 2.3 is thus complete.

Pr oof of T heor em 3 .1 . Similar to Owen(1990), it can be shown, under the

condition EY 2 <∞, that

max
1≤i≤n

|Zm,M,i(µ)| = op(n1/2), max
1≤i≤n

|Zm,R,i(µ)| = op(n1/2),

max
1≤i≤n

|Zm,A,i(µ)| = op(n1/2). (7.7)

On the other hand,

1

n

n
∑

i=1

Z2
m,M,i(µ) =

1

n

n
∑

i=1

{δi(Yi − µ)2 + (1 − δi)(Ȳr − µ)2} = pσ2 + op(1), (7.8)

1

n

n
∑

i=1

Z2
m,R,i(µ) =

1

n

n
∑

i=1

{δi(Yi − µ)2 + (1 − δi)(Y (R)
i − µ)2}

= pσ2 + op(1) +
m

n
· 1

m

∑

i∈sm
(Y

(R)
i − µ)2

= pσ2 + op(1) + (1 − p)σ2 + op(1) = σ2 + op(1), (7.9)

and

1

n

n
∑

i=1

Z2
m,A,i(µ) =

1

n

n
∑

i=1

{δi(Yi − µ)2 + (1 − δi)(Y (A)
i − µ)2}

= pσ2 + op(1) +
1

n

n
∑

i=1

(1 − δi)(Y (R)
i − µ+ Ȳr − Ȳ (R)

m )2

= pσ2 + op(1) +
1

n

n
∑

i=1

(1 − δi)(Y (R)
i − µ+ op(1))2 = σ2 + op(1). (7.10)

By Theorem 2.1 and (7.7) to (7.10), similar to the proof of Theorem 1 in

Owen(1990) it can be shown that

ℓm,M,n(µ) =

{

1

n

n
∑

i=1

Z2
m,M,i(µ)

}−1{ 1√
n

n
∑

i=1

Zm,M,i(µ)

}2

+ op(1)
d−→ p−2χ21,
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ℓm,R,n(µ) =

{

1

n

n
∑

i=1

Z2
m,R,i(µ)

}−1{ 1√
n

n
∑

i=1

Zm,R,i(µ)

}2

+ op(1)

d−→ (1 − p+ p−1)χ21,

and

ℓm,A,n(µ) =

{

1

n

n
∑

i=1

Z2
m,A,i(µ)

}−1{ 1√
n

n
∑

i=1

Zm,A,i(µ)

}2

+ op(1)
d−→ p−1χ21.

Thus we have Theorem 3.1.

Pr oof of T heor em 3 .2 . It can be shown, by using the results in Theorem

2.2, that

1

n

n
∑

i=1

Z2
d,R,i(θ)

=
1

n

n
∑

i=1

{I(δiYi + (1 − δi)Y (R)
i ≤ y) − 2θI(δiYi + (1 − δi)Y (R)

i ≤ y) + θ2}

= FR(y) − 2θFR(y) + θ2 = θ(1 − θ) + op(1)

= F (y){1 − F (y)} + op(1), (7.11)

and

1

n

n
∑

i=1

Z2
d,A,i(θ)

=
1

n

n
∑

i=1

{I(δiYi + (1 − δi)Y (A)
i ≤ y) − 2θI(δiYi + (1 − δi)Y (A)

i ≤ y) + θ2}

= FA(y) − 2θFA(y) + θ2 = θ(1 − θ) + op(1)

= F (y){1 − F (y)} + op(1), (7.12)

By (7.11), (7.12) and the boundness of Zd,R,i(θ) and Zd,A,i(θ), similar to the

proof of Theorem 1 in Owen (1990) it can be shown that

ℓd,R,n(θ) =

{

1

n

n
∑

i=1

Z2
d,R,i(θ)

}−1{ 1√
n

n
∑

i=1

Zd,R,i(θ)

}2

+ op(1)
d−→ (1 − p+ p−1)χ21,

and

ℓd,A,n(θ) =

{

1

n

n
∑

i=1

Z2
d,A,i(θ)

}−1{ 1√
n

n
∑

i=1

Zd,A,i(θ)

}2

+op(1)
d−→ [σ2A/{θ(1−θ)}]χ21.
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Thus we have Theorem 3.2.

Pr oof of T heor em 3 .3 . It can be shown, by using the results in Theorem

2.2, that

1

n

n
∑

i=1

Z2
q,R,i(θq)

=
1

n

n
∑

i=1

{I(δiYi + (1 − δi)Y (R)
i ≤ θq) − 2qI(δiYi + (1 − δi)Y (R)

i ≤ θq) + q2}

= FR(θq) − 2qFR(θq) + q2

= F (θq){1 − F (θq)} + op(1) = q(1 − q) + o(1), (7.13)

and

1

n

n
∑

i=1

Z2
q,A,i(θq)

=
1

n

n
∑

i=1

{I(δiYi + (1 − δi)Y (A)
i ≤ θq) − 2qI(δiYi + (1 − δi)Y (A)

i ≤ θq) + q2}

= FA(θq) − 2qFA(θq) + q2

= F (θq){1 − F (θq)} + op(1) = q(1 − q) + o(1), (7.14)

By Theorem 2.2, (7.13), (7.14) and the boundness of Zq,R,i(θ) and Zq,A,i(θ),

similar to the proof of Theorem 1 in Owen(1990) it can be shown that

ℓq,R,n(θ) =

{

1

n

n
∑

i=1

Z2
q,R,i(θq)

}−1{ 1√
n

n
∑

i=1

Zq,R,i(θq)

}2

+ op(1)

d−→ (1 − p+ p−1)χ21,

and

ℓq,A,n(θ) =

{

1

n

n
∑

i=1

Z2
q,A,i(θq)

}−1{ 1√
n

n
∑

i=1

Zq,A,i(θq)

}2

+ op(1)

d−→ [σ2A1,q/{q(1 − q)}]χ21.

Thus we have Theorem 3.3.
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Pr oof of Lem m a 2 .1 . We use the notation used in the proof of Theorem 2.2.

Similar to the proof of (7.6), we have

FA(y + n−1/2) =
r

n
F̄r(y + n−1/2) +

m

n
F ∗
m(y + n−1/2 + an)

=
r

n
F̄r(y + n−1/2) +

m

n
F ∗
m(y)

+
m

n
{f(y)(n−1/2 + an) + op(n−1/2)},

and

FA(y − n−1/2) =
r

n
F̄r(y − n−1/2) +

m

n
F ∗
m(y − n−1/2 + an)

=
r

n
F̄r(y − n−1/2) +

m

n
F ∗
m(y)

+
m

n
{f(y)(−n−1/2 + an) + op(n−1/2)}.

Combining with (7.5) and the conditions in this lemma, it follows that

FA(y + n−1/2) − FA(y − n−1/2)

=
r

n
{F̄r(y + n−1/2) − F̄r(y − n−1/2)} + 2n−1/2m

n
f(y) + op(n−1/2)

=
r

n
{F (y + n−1/2) − F (y − n−1/2)} + 2n−1/2m

n
f(y) + op(n−1/2)

= 2
r

n
n−1/2f(y) + 2n−1/2m

n
f(y) + op(n

−1/2) = 2f(y)n−1/2 + op(n
−1/2).

Thus we have Lemma 2.1.

Pr oof of Lem m a 2 .2 . Let bn = θ̂
(A)
q − θq. We use the notation in the proof

of Theorem 2.2. Similar to the proof of Lemma 2.1, write

FA(θ̂(A)
q + n−1/2) = FA(θq + bn + n−1/2)

=
r

n
F̄r(θq + bn + n−1/2) +

m

n
F ∗
m(θq + n−1/2 + an + bn)

=
r

n
F̄r(θq + bn + n−1/2) +

m

n
F ∗
m(θq)

+
m

n
{f(θq)(n

−1/2 + bn + an) + op(n−1/2)},

and

FA(θ̂(A)
q − n−1/2) = FA(θq + bn − n−1/2)
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=
r

n
F̄r(θq + bn − n−1/2) +

m

n
F ∗
m(θq − n−1/2 + an + bn)

=
r

n
F̄r(θq + bn − n−1/2) +

m

n
F ∗
m(θq)

+
m

n
{f(θq)(−n−1/2 + bn + an) + op(n

−1/2)}.

Combining with (7.5) and the conditions in this lemma, it follows that

FA(θ̂(A)
q + n−1/2) − FA(θ̂(A)

q − n−1/2) = 2f(θq)n
−1/2 + op(n−1/2).

Thus we have the first result of Lemma 2.2. Similarly, we can prove the second

result. To prove the third result, write

1

r

∑

i∈sr
YiI(Yi ≤ θ̂(A)

q )

=
1

r

∑

i∈sr
YiI(Yi ≤ θq) +

1

r

∑

i∈sr
YiI(θq < Yi ≤ θ̂(A)

q , θ̂(A)
q − θq ≥ 0)

+
1

r

∑

i∈sr
YiI(θ̂

(A)
q < Yi ≤ θq, θ̂(A)

q − θq < 0) = I1n + I2n + I3n. (7.15)

It can be shown that I1n = E{Y I(Y ≤ θq)} + op(1). From Theorem 2.3, θ̂
(A)
q =

θq + op(1). So with probability tending to one, |θ̂(A)
q − θq| < δ for any δ > 0.

Thus, with probability tending to one, I2n ≤ 1
r

∑

i∈sr |Yi|I(θq < Yi ≤ θq + δ) ≤
(|θq|+ δ)1r

∑

i∈sr(θq < Yi ≤ θq +δ) = (|θq|+ δ){F (θq + δ)−F (θq)}+op(1) = op(1)

as δ → 0. Similarly, I3n = op(1). It follows that

1

r

∑

i∈sr
YiI(Yi ≤ θ̂(A)

q ) = E{Y I(Y ≤ θq)} + op(1).

On the other hand, it can be shown that

1

n

∑

i∈sm
Y

(A)
i I(Y

(A)
i ≤ θ̂(A)

q )

=
1

n

∑

i∈sm
Y

(R)
i I(Y

(R)
i ≤ θq) + op(1) =

n− r
nr

∑

i∈sr
YiI(Yi ≤ θq) + op(1).

Thus we have the third result of Lemma 2.2.
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TABLE 1

Confidence interval coverage probability (CP), lower (L) and upper (U) tail error

rates and average length (AL) for the mean µ = E(Y ) with p = 0.7, 0.8, 0.9

and n = 50, 120: Imputation methods M, R and A; R = 10, 000 simulations;

Y ∼ exp(1); NA = normal approximation, EL = empirical likelihood

CP(%) L(%) U(%) AL
n p IMP NA EL NA EL NA EL NA EL

60 0.7 M 92.6 93.7 1.3 3.0 6.0 3.4 0.59 0.64
A 92.4 91.7 1.4 3.6 6.1 4.7 0.58 0.60
R 92.7 93.7 1.2 2.4 6.1 4.0 0.64 0.66

0.8 M 92.7 93.7 1.2 2.5 6.0 3.8 0.55 0.58
A 92.4 91.2 1.3 3.7 6.3 5.1 0.55 0.61
R 92.5 93.0 1.4 3.0 6.1 4.0 0.59 0.57

0.9 M 92.7 93.5 1.2 2.6 6.1 4.0 0.52 0.54
A 92.8 92.7 1.2 2.2 6.1 4.8 0.52 0.53
R 92.7 93.4 1.1 2.5 6.1 4.3 0.54 0.56

120 0.7 M 93.7 93.9 1.2 3.4 5.1 2.8 0.42 0.44
A 93.4 91.6 1.4 3.6 5.2 4.8 0.42 0.43
R 93.5 94.0 1.2 2.5 5.3 3.5 0.46 0.47

0.8 M 93.7 94.2 1.3 3.0 5.1 2.9 0.39 0.41
A 93.4 91.7 1.4 3.8 5.3 4.5 0.39 0.40
R 93.6 94.2 1.2 3.0 5.1 3.0 0.42 0.43

0.9 M 93.9 94.2 1.3 2.8 4.8 3.1 0.37 0.38
A 93.7 93.7 1.4 2.9 4.9 3.5 0.37 0.38
R 93.8 95.0 1.3 2.1 4.9 2.9 0.39 0.39
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TABLE 2

Confidence interval coverage probability (CP), lower (L) and upper (U) tail error

rates and average lengths (AL) for the distribution function θ = F (y) = 0.86

with p = 0.7, 0.8, 0.9 and n = 60, 120: Imputation methods R and A; R =

10, 000 simulations; Y ∼ exp(1); NA = normal approximation, EL = empirical

likelihood.

CP(%) L(%) U(%) AL
n p IMP NA EL NA EL NA EL NA EL

60 0.7 R 90.9 95.1 7.9 2.3 1.2 2.6 0.22 0.27
A 91.9 95.3 7.2 2.3 0.9 2.4 0.21 0.26

0.8 R 92.8 94.7 6.0 2.4 1.2 2.8 0.20 0.25
A 93.4 95.2 5.8 2.2 0.9 2.5 0.20 0.24

0.9 R 92.3 94.7 6.7 2.8 1.0 2.5 0.19 0.22
A 91.8 94.7 7.3 3.9 0.8 2.2 0.18 0.22

120 0.7 R 93.1 94.8 5.5 2.6 1.4 2.6 0.16 0.19
A 93.0 95.0 5.9 2.7 1.1 2.3 0.15 0.18

0.8 R 92.5 94.6 6.2 2.9 1.3 2.5 0.15 0.18
A 93.2 94.9 5.8 2.8 1.1 2.3 0.14 0.17

0.9 R 93.9 94.8 4.6 2.8 1.5 2.4 0.13 0.16
A 94.0 94.9 4.6 2.6 1.4 2.5 0.13 0.16
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TABLE 3

Confidence interval coverage probability (CP), lower (L) and upper (U) tail error

rates and average lengths (AL) for the median θ 1
2

= F−1(12) with p = 0.7, 0.8, 0.9

and n = 60, 120: Imputation methods R and A; R = 10, 000 simulations; Y ∼
exp(1); NA = normal approximation, EL = empirical likelihood, W = Woodruff.

CP(%) L(%) U(%) AL
n p IMP NA EL W NA EL W NA EL W NA EL W

60 0.7 R 87.3 95.0 95.5 4.0 2.5 2.4 8.7 2.4 2.2 0.65 0.68 0.70
A 90.4 95.8 96.1 3.9 2.9 2.8 5.7 1.3 1.2 0.63 0.67 0.68

0.8 R 87.3 95.3 95.6 4.1 2.3 2.3 8.6 2.4 2.2 0.60 0.63 0.64
A 91.0 95.6 95.7 3.5 3.0 2.9 5.5 1.5 1.4 0.58 0.61 0.62

0.9 R 88.5 95.4 95.4 3.2 2.3 2.3 8.3 2.3 2.2 0.54 0.58 0.58
A 91.0 95.0 95.3 3.3 3.1 2.9 5.6 1.9 1.8 0.54 0.55 0.56

120 0.7 R 88.6 94.5 94.8 3.9 2.9 2.8 7.5 2.7 2.4 0.47 0.48 0.48
A 91.5 95.2 95.5 3.4 2.9 2.8 5.1 1.9 1.7 0.45 0.46 0.47

0.8 R 89.6 94.7 94.9 3.7 2.7 2.7 6.8 2.5 2.4 0.43 0.43 0.44
A 92.1 95.6 95.7 3.3 2.8 2.8 4.7 1.6 1.5 0.41 0.42 0.43

0.9 R 90.3 94.6 94.7 3.1 2.7 2.7 6.6 2.6 2.6 0.39 0.40 0.40
A 91.7 95.0 95.1 3.2 3.1 3.1 5.1 2.0 1.9 0.38 0.39 0.39
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