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The loal time proess {η(x, t); x ∈ R, t ≥ 0} is de�ned via
∫

A
η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A} (1.1)for any t ≥ 0 and Borel set A ⊂ R, where λ(·) is the Lebesgue measure, and η(·, ·) is frequentlyreferred to as Wiener or Brownian loal time.Let η1(x, t) and η2(x, t) be two independent Brownian loal times. The iterated loal time isde�ned by

Υ(x, t) := η1(x, η2(0, t)).Denote
Υ∗(t) := sup

x∈R

Υ(x, t). (1.2)First we give asymptoti values for the upper and lower tails of the distribution of Υ∗(t).Theorem 1.1 As z → ∞

P (Υ∗(t) > zt1/4) ∼ 211/3z2/3

(3π)1/2
exp

(

−3z4/3

25/3

) (1.3)and as z → 0,
P (Υ∗(t) < zt1/4) ∼ 4z2

(2π)1/2

∫ ∞

0

G(s)

s3
ds, (1.4)for all t > 0, where

G(s) := P

(

sup
x∈R

η(x, 1) < s

)

.Note that an expliit formula for G(s) in terms of Bessel funtions is given in Csáki and Földes [9℄.The following integral tests are obtained.Theorem 1.2 Let f(t) > 0 be a non-dereasing funtion and put
I(f) :=

∫ ∞

1

f2(t)

t
exp

(

− 3

25/3
f4/3(t)

)

dt.Then
P (Υ∗(t) > t1/4f(t) i.o. as t → ∞) = 0 or 1aording as I(f) onverges or diverges.
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Theorem 1.3 Let g(t) > 0 be a non-inreasing funtion and put
J(g) :=

∫ ∞

1

g2(t)

t
dt.Then

P (Υ∗(t) < t1/4g(t) i.o. as t → ∞) = 0 or 1aording as J(g) onverges or diverges.In partiular, we have the following law of the iterated logarithm:
lim sup

t→∞

Υ∗(t)

t1/4(log log t)3/4
=

25/4

33/4
a.s.To ompare the above results with similar integral tests for Υ(0, t), note that {η(0, t); t ≥

0} has the same distribution as {sup0≤s≤t W (s); t ≥ 0}. Consequently {Υ(0, t); t ≥ 0} has thesame distribution as {sup0≤s≤t W1(η2(0, s)); t ≥ 0}, or, as easily seen, the same distribution as
{sup0≤s≤t W1(W2(s) ∨ 0); t ≥ 0}. From Bertoin [2℄ we obtain the following integral tests.Theorem A Put

Î(f) :=

∫ ∞

1

f2/3(t)

t
exp

(

− 3

25/3
f4/3(t)

)

dt,

Ĵ(g) :=

∫ ∞

1

g(t)

t
dt.Then

P (Υ(0, t) > t1/4f(t) i.o. as t → ∞) = 0 or 1aording as Î(f) onverges or diverges. Moreover,
P (Υ(0, t) < t1/4g(t) i.o. as t → ∞) = 0 or 1aording as Ĵ(g) onverges or diverges.In partiular, we have the same law of the iterated logarithm as for Υ∗(t):

lim sup
t→∞

Υ(0, t)

t1/4(log log t)3/4
=

25/4

33/4
a.s.In the subsequent setions the proofs of Theorem 1.1, 1.2 and 1.3 will be given. In Setion 5 weapply the results for the loal time of the simple random walk on the 2-dimensional omb.In the proofs unimportant onstants of possibly di�erent positive values will be denoted by

c, c0, c1, c2. 3



2 Proof of Theorem 1.1Sine
Υ∗(t)

t1/4
=

η∗1(η2(0, t))

(η2(0, t))1/2

√

η2(0, t)

t1/2
,it has the same distribution as η∗1(1)

√

|N |, where η∗1(s) = supx∈R η1(x, s) and N is a standardnormal random variable independent of η∗1(1). Hene, denoting by ϕ the standard normal density,
P (Υ∗(t) > zt1/4) = 2

∫ ∞

0

(

1 − G

(

z√
u

))

ϕ(u) du. (2.1)For the upper tail of G we have (see Csáki [5℄)
1 − G(z) ∼ 4

√

2

π
z exp

(

−z2

2

)

, z → ∞. (2.2)Now split the integral in (2.1) into three parts:
∫ ∞

0
=

∫ z2/3/2

0
+

∫ 2z2/3

z2/3/2
+

∫ ∞

2z2/3

= I1 + I2 + I3.Using (2.2), it is easy to see that
I1 ≤ c(1 − G(21/2z2/3)) ≤ cz2/3 exp(−z4/3),

I3 ≤ c

∫ ∞

2z2/3

ϕ(u) du ≤ c exp(−2z4/3),so I1 and I3 are negligible ompared to (1.3). For I2 we an use (2.2) and hene
I2 ∼ 8

π

∫ 2z2/3

z2/3/2

z√
u

exp

(

− z2

2u
− u2

2

)

du =
16z4/3

π

∫

√
2

1/
√

2
exp

(

−z4/3

2

(

1

v2
+ v4

)

)

dv.The asymptoti value of this integral an be obtained by Laplae's method (f., e.g., de Bruijn [3℄)
∫ b

a
exp(−λh(v)) dv ∼

√
2πe−λh(v0)

√

λh′′(v0)
, λ → ∞,where v0 is the plae of the minimum of h in (a, b), i.e., h′(v0) = 0. Applying this, a straightforwardalulation leads to (1.3).To see (1.4), we have similarly

P (Υ∗(t) < zt1/4) = 2

∫ ∞

0
G

(

z√
u

)

ϕ(u) du = 4z2

∫ ∞

0

G(s)

s3
ϕ

(

z2

s2

)

ds.4



This integral is �nite, sine
G(s) ∼ c exp

(

−2j2
1

s2

)

, s → 0,where j1 is the smallest positive zero of the Bessel funtion J0(·) (f. Csáki and Földes [9℄).Sine ϕ(z2/s2) ≤ ϕ(0), we have
P (Υ∗(t) < xt1/4) ∼ 4z2ϕ(0)

∫ ∞

0

G(s)

s3
ds, z → 0by the dominated onvergene theorem. This ompletes the proof of Theorem 1.1. 23 Proof of Theorem 1.2From Shi [13℄ we have the following result.Lemma A Let f be a funtion as in Theorem 1.2. Put T1 = 1,

Tk+1 = Tk

(

1 +
1

f
4/3
k

)

, k = 1, 2, . . . ,where fk = f(Tk). Then I(f) < ∞ if and only if
∞
∑

k=1

f
2/3
k exp

(

− 3

25/3
f

4/3
k

)

< ∞.First we prove the onvergene part of Theorem 1.2. Assume that I(f) < ∞ and de�ne theevents
Ak = {Υ∗(Tk+1) > T

1/4
k fk}.It follows from Theorem 1.1 that

P (Ak) ≤ cf
2/3
k exp



− 3

25/3

(

1 +
1

f
4/3
k

)−1/3

f
4/3
k



 .Using the inequality
(1 + u)−1/3 ≥ 1 − u

3
, 0 ≤ u ≤ 1,with u = f

−4/3
k , we obtain further

P (Ak) ≤ cf
2/3
k exp

(

− 3

25/3
f

4/3
k

)

,5



whih is summable by Lemma A. Hene P (Ak i.o.) = 0, i.e., for large k we have almost surely
Υ∗(Tk+1) ≤ T

1/4
k f(Tk).But for Tk ≤ t ≤ Tk+1, i.e., for large t

Υ∗(t) ≤ Υ(Tk+1) ≤ T
1/4
k f(Tk) ≤ t1/4f(t),proving the onvergene part.For the divergene part, we follow the proof in [5℄. Without loss of generality we may assume

(log log t)3/4 ≤ f(t) ≤ (2 log log t)3/4and, as easily seen,
(log k/2)3/4 ≤ fk ≤ (2 log k)3/4.In the proof we also use the inequality

Tk

Tℓ
≤
(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

, k < ℓ.Now assume that I(f) = ∞, and de�ne the events
Bk = {T 1/4

k fk ≤ Υ∗(Tk) < T
1/4
k+1fk},where fk = f(Tk). It follows from Theorem 1.1 that

P (Bk) ≥ cf
2/3
k exp

(

−3f
4/3
k

25/3

)[

1 −
(

Tk+1

Tk

)1/6

exp

(

−3f
4/3
k

25/3

(

(

Tk+1

Tk

)1/3

− 1

))]

.It is readily seen that limk→∞ Tk+1/Tk = 1, and
lim

k→∞
f

4/3
k

(

(

Tk+1

Tk

)1/3

− 1

)

=
1

3
,so there is a positive onstant c suh that

P (Bk) ≥ cf
2/3
k exp

(

−3f
4/3
k

25/3

)

,and hene by Lemma A we have ∑k P (Bk) = ∞.6



Next we estimate P (BkBℓ). Let k < ℓ and
Υ∗(Tk, Tℓ) = sup

x∈R

(η1(x, η2(0, Tℓ)) − η1(x, η2(0, Tk))) .Then, similarly to the proof in [5℄,
Υ∗(Tk, Tℓ) ≤ Υ∗(Tℓ) ≤ Υ∗(Tk) + Υ∗(Tk, Tℓ)and

P (BkBℓ) ≤ P (T
1/4
k fk ≤ Υ∗(Tk) < T

1/4
k+1fk,Υ

∗(Tℓ) − Υ∗(Tk) ≥ T
1/4
ℓ fℓ − T

1/4
k+1fk)

≤ P (Bk)P (T
1/4
ℓ fℓ − T

1/4
k+1fk ≤ Υ∗(Tk, Tℓ) ≤ T

1/4
ℓ+1fℓ).But Υ∗(Tk, Tℓ) has the same distribution as Υ∗(Tℓ − Tk), or (Tℓ − Tk)

1/4Υ∗(1), hene
P (BkBℓ) ≤ P (Bk)P

(

Υ∗(1) ≥
fℓT

1/4
ℓ − fkT

1/4
k+1

(Tℓ − Tk)1/4

)

≤ P (Bk)P

(

Υ∗(1) ≥ fℓ

T
1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4

)

≤ cP (Bk)f
2/3
ℓ H

2/3
k,ℓ exp



−
3f

4/3
ℓ H

4/3
k,ℓ

25/3



 , (3.1)where
Hk,ℓ =

T
1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4
.Using the inequality

(1 − u)3/4

4
≤ 1 − u1/4

(1 − u)1/4
≤ 1, 0 < u < 1,we get

1

4

(

1 − Tk

Tℓ

)3/4 T
1/4
ℓ − T

1/4
k+1

T
1/4
ℓ − T

1/4
k

≤ Hk,ℓ ≤ 1.For k + 2 ≤ ℓ we have, by straightforward alulation,
T

1/4
ℓ − T

1/4
k+1

T
1/4
ℓ − T

1/4
k

≥
T

1/4
k+2 − T

1/4
k+1

T
1/4
k+2 − T

1/4
k

∼ 1

1 +
(

fk+1

fk

)4/3
,from whih

c

(

1 − Tk

Tℓ

)3/4

≤ Hk,ℓ ≤ 17



with ertain onstant c > 0. Consequently,
P (BkBℓ) ≤ cP (Bk)f

2/3
ℓ exp

(

−c1f
4/3
ℓ

(

1 − Tk

Tℓ

))

.Now, for �xed k, let
L1 = {ℓ : k + 2 ≤ ℓ ≤ k + f

4/3
ℓ },

L2 =
{

ℓ : k + f
4/3
ℓ < ℓ ≤ k + 4f

4/3
ℓ log f

4/3
ℓ

}

,

L3 =
{

ℓ : k + 4f
4/3
ℓ log f

4/3
ℓ < ℓ

}

.If ℓ ∈ L1, then
1 − Tk

Tℓ
≥ 1 −

(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

≥ ℓ − k

2f
4/3
ℓ

,i.e.,
P (BkBℓ) ≤ cP (Bk)f

2/3
ℓ e−c2(ℓ−k),onsequently

∑

ℓ∈L1

P (BkBℓ) ≤ KP (Bk). (3.2)If ℓ ∈ L2, then
1 − Tk

Tℓ
≥ 1 −

(

1 +
1

f
4/3
ℓ

)−(ℓ−k)

≥ cwith some c > 0. We have
P (BkBℓ) ≤ cP (Bk)f

2/3
ℓ e−c0f

4/3

ℓ ≤ cP (Bk)(log ℓ)1/2ℓ−c0/2 ≤ cP (Bk)(log k)1/2k−c0/2.But
ℓ − k ≤ 4f

4/3
ℓ log f

4/3
ℓ ≤ ℓ

2
,i.e., ℓ ≤ 2k, hene

ℓ − k ≤ 4f
4/3
2k log f

4/3
2k .Consequently,

∑

ℓ∈L2

P (BkBℓ) ≤ cP (Bk)(log k)1/2k−c0/2f
4/3
2k log f

4/3
2k ≤ cP (Bk). (3.3)
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If ℓ ∈ L3, then
T

1/4
ℓ − T

1/4
k+1

(Tℓ − Tk)1/4
≥ 1 −

(

Tk+1

Tℓ

)1/4

≥ 1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4

.Hene, using (3.1),
P (BkBℓ) ≤ cP (Bk)f

2/3
ℓ exp






−3f

4/3
ℓ

25/3



1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4




4/3





.It an be seen that

3f
4/3
ℓ

25/3









1 −
(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4




4/3

− 1







∼ −21/3f
4/3
ℓ

(

1 +
1

f
4/3
ℓ

)−(ℓ−k−1)/4

= −21/3f
4/3
ℓ exp

(

−ℓ − k − 1

4
log

(

1 +
1

f
4/3
ℓ

))

∼ −21/3f
4/3
ℓ exp

(

−ℓ − k − 1

4f
4/3
ℓ

)

≥ −21/3f
4/3
ℓ exp

(

− log f
4/3
ℓ

)

≥ −21/3.It follows that
P (BkBℓ) ≤ cP (Bk)f

2/3
ℓ exp

(

−3f
4/3
ℓ

25/3

)

≤ cP (Bk)P (Bℓ). (3.4)On using (3.2), (3.3), (3.4) together with P (BkBℓ) ≤ P (Bk) for ℓ = k, k + 1, we obtain
lim inf
n→∞

∑n
k=1

∑n
ℓ=1 P (BkBℓ)

(
∑n

k=1 P (Bk))
2 > 0,hene from Borel-Cantelli lemma and 0-1 law we obtain P (Bk i.o.) = 1, ompleting the proof ofTheorem 1.2. 2
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4 Proof of Theorem 1.3First assume that J(g) < ∞. Let tk = ek and de�ne the events
Bk = {Υ∗(tk) < t

1/4
k+1g(tk+1)}.Then

P (Bk) ≤ cg2(tk+1),whih is well-known to be summable if J(g) < ∞. Hene for large k we have almost surely
Υ∗(tk) ≥ t

1/4
k+1g(tk+1),and for tk ≤ t < tk+1

Υ∗(t) ≥ Υ∗(tk) ≥ t
1/4
k+1g(tk+1) ≥ t1/4g(t),proving the onvergene part.Now assume that J(g) = ∞. Put tk = 2k and de�ne the events

Ak = {η2(0, tk) ≤ t
1/2
k g2(tk)},

Bk = {η∗1(t
1/2
k g2(tk)) ≤ t

1/4
k g(tk)}.Then P (Ak i.o.) = 1 (f. Csáki [4℄, the proof of the divergent part of Theorem 2.1 (i) on p. 211)and, by saling property, P (Bk) = p > 0, independently of k. It follows from Lemma 3.1 of Csákiet al. [7℄ that P (AkBk i.o.) ≥ p. Consequently, P (Υ∗(tk) ≤ t

1/4
k g(tk) i.o.) ≥ p > 0. Now the proofof the divergene part is omplete by 0 − 1 law. 25 Simple random walk on 2-dimensional ombWe onsider a simple random walk C(n) on the 2-dimensional omb lattie C

2 that is obtained from
Z

2 by removing all horizontal lines o� the x-axis.A formal way of desribing a simple random walk C(n) on the above 2-dimensional omb lattie
C

2 an be formulated via its transition probabilities as follows: for (x, y) ∈ Z
2

P (C(n + 1) = (x, y ± 1) | C(n) = (x, y)) =
1

2
, if y 6= 0, (5.1)

P (C(n + 1) = (x ± 1, 0) | C(n) = (x, 0)) = P (C(n + 1) = (x,±1) | C(n) = (x, 0)) =
1

4
. (5.2)Unless otherwise stated, we assume that C(0) = 0 = (0, 0). The oordinates of the just de�nedvetor valued simple random walk C(n) on C

2 will be denoted by C1(n), C2(n), i.e., C(n) :=
(C1(n), C2(n)). 10



For a reent review of some related literature onerning this simple random walk we refer toBertahi [1℄ and Csáki et al. [8℄. In the latter paper we established a strong approximation for therandom walk C(n) = (C1(n), C2(n)) that reads as follows.Theorem B On an appropriate probability spae for the random walk {C(n) = (C1(n), C2(n));
n = 0, 1, 2, . . .} on C

2, one an onstrut two independent standard Wiener proesses {W1(t); t ≥ 0},
{W2(t); t ≥ 0} so that, as n → ∞, we have with any ε > 0

n−1/4|C1(n) − W1(η2(0, n))| + n−1/2|C2(n) − W2(n)| = O(n−1/8+ε) a.s.,where η2(0, ·) is the loal time proess at zero of W2(·).De�ne now the loal time proess Ξ(·, ·) of the random walk {C(n);n = 0, 1, . . .} on the 2-dimensional omb lattie C
2 by

Ξ(x, n) := #{0 < k ≤ n : C(k) = x}, x ∈ C
2, n = 1, 2, . . . (5.3)We now introdue our next result that onludes a strong approximation of the just introduedloal time proess Ξ((x, 0), n).Theorem 5.1 On a suitable probability spae we an de�ne a simple random walk on C

2 and twoindependent Wiener loal times η1(·, ·), η2(·, ·) suh that as n → ∞, we have for any ε > 0

sup
x∈Z

|Ξ((x, 0), n) − 2η1 (x, η2(0, n))| = O(n1/8+ε) a.s. (5.4)Proof. As in [8℄, start with two independent simple symmetri random walks on the line
{S1(n), S2(n); n = 0, 1, . . .}with respetive loal times

ξi(x, n) := #{j : 1 ≤ j ≤ n, Si(j) = x}, i = 1, 2, x ∈ Z, n = 1, 2, . . .and inverse loal times
ρi(N) := min{j > ρN−1 : Si(j) = 0}, i = 1, 2, N = 1, 2, . . .with ρi(0) = 0. Assume that on the same probability spae we have an i.i.d. sequene of randomvariables G1, G2, . . . with geometri distribution,

P (G1 = k) =
1

2k+1
, k = 0, 1, 2, . . . ,that is independent of S1(·), S2(·). We may onstrut a simple random walk on the 2-dimensionalomb lattie C

2 as follows. Put TN = G1 +G2 + . . . GN , N = 1, 2, . . . For n = 0, . . . , T1, let C1(n) =11



S1(n) and C2(n) = 0. For n = T1 + 1, . . . , T1 + ρ2(1), let C1(n) = C1(T1), C2(n) = S2(n − T1). Ingeneral, for TN + ρ2(N) < n ≤ TN+1 + ρ2(N), let
C1(n) = S1(n − ρ2(N)),

C2(n) = 0,and, for TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1), let
C1(n) = C1(TN+1 + ρ2(N)) = S1(TN+1),

C2(n) = S2(n − TN+1).Then it an be seen that, in terms of these de�nitions for C1(n) and C2(n), C(n) = (C1(n), C2(n))is a simple random walk on the 2-dimensional omb lattie C
2.First we approximate the loal time Ξ((x, 0), n) by iterated simple symmetri random walk loaltime.Proposition 5.1 On a suitable probability spae we an de�ne a simple random walk C on C

2 withloal time Ξ and two simple random walks S1, S2 on Z with loal times ξ1, ξ2 suh that as n → ∞,we have for any ε > 0

sup
x∈Z

|Ξ((x, 0), n) − 2ξ1 (x, ξ2(0, n))| = O(n1/8+ε) a.s. (5.5)Proof. Introdue the following notations. For the random walk C(·) let H(n) be the horizontalsteps on the x-axis up to time n and let V (n) be the number of vertial steps up to time n. Moreover,let B(n) be the number of vertial visits to the x-axis up to time n. Put
Ξ(h)((x, 0), n) := #{0 < k ≤ n : C(k) = (x, 0), |C1(k) − C1(k − 1)| > 0, C2(k − 1) = 0}and

Ξ(v)((x, 0), n) = Ξ((x, 0), n) − Ξ(h)((x, 0), n),i.e., the horizontal, resp. vertial, visits to the point (x, 0) up to time n. Then, we have learly
Ξ(h)((x, 0), n) = ξ1(x,H(n)),

B(n) = ξ2(0, V (n)) = ξ2(0, n − H(n)) = O(n1/2+ε) a.s.,

H(n) = G1 + G2 + . . . + GB(n) = O(B(n)) = O(n1/2+ε) a.s.,

|H(n) − B(n)| = |G1 + G2 + . . . + GB(n) − B(n)| = O((B(n))1/2+ε) = O(n1/4+ε) a.s.,as n → ∞. Using the inrement property of simple symmetri random walk loal time (f. Révész[12℄, Theorem 11.15), we get
ξ2(0, n) − ξ2(0, n − H(n)) = O((H(n))1/2+ε) a.s., n → ∞,12



and
Ξ(h)((x, 0), n) = ξ1(x,H(n)) = ξ1(x,B(n) + O(B(n)1/2+ε)) = ξ1(x,B(n)) + O(B(n)1/4+ε)

= ξ1(x, ξ2(0, n − H(n))) + O(ξ2(0, n − H(n))1/4+ε

= ξ1(x, ξ2(0, n)) + O((H(n))1/4+ε) = ξ1(x, ξ2(0, n)) + O(n1/8+ε),almost surely, where we used that H(n) = O(n1/2+ε) a.s., n → ∞.Now we show that Ξ(h) and Ξ(v) are lose to eah other.Lemma 5.1 As n → ∞, we have almost surely
sup
x∈Z

|Ξ(h)((x, 0), n) − Ξ(v)((x, 0), n)| = O(n1/8+ε). (5.6)Proof. By the law of the iterated logarithm we have C1(n) = O(n1/4+ε) almost surely, as n → ∞,and hene it su�es to show
sup

|x|≤n1/4+ε

|Ξ(h)((x, 0), n) − Ξ(v)((x, 0), n)| = O(n1/8+ε) a.s. (5.7)as n → ∞.Let κ(x, 0) be the time of the �rst horizontal visit of C(·) to (x, 0), and for ℓ ≥ 1 let κ(x, ℓ)denote the time of the ℓ-th horizontal return of C(·) to (x, 0). Then
Ξ(v)((x, 0), κ(x, ℓ)) =

ℓ
∑

j=1

(

Ξ(v)((x, 0), κ(x, j)) − Ξ(v)((x, 0), κ(x, j − 1))
)

,whih is a sum of i.i.d. random variables with geometri distribution
P (Ξ(v)((x, 0), κ(x, j)) − Ξ(v)((x, 0), κ(x, j − 1)) = i) =

1

2i+1
, i = 0, 1, 2, . . .By exponential Kolmogorov inequality (see Tóth [14℄)

P (max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ) − ℓ| > u) ≤ 2 exp

(

− u2

8m

)

.Hene, we have also
P (max

|x|≤m
max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ) − ℓ| > u) ≤ 2m exp

(

− u2

8m

)

.Putting u = m1/2+ε, Borel-Cantelli lemma implies
max
|x|≤m

max
ℓ≤m

|Ξ(v)((x, 0), κ(x, ℓ)) − ℓ| = O(m1/2+ε) a.s.13



as m → ∞.Sine
Ξ(h)((x, 0), n) = O(n1/4+ε) a.s., n → ∞,with m = n1/4+ε, we have the Lemma. 2This also ompletes the proof of the Proposition. 2Now Theorem 5.1 follows from strong invariane priniple for loal time (f. Révész [11℄) quotedas Theorem C below, and inrement results for Wiener loal time (f. Révész [12℄, Theorem 11.11).Theorem C On a suitable probability spae one an de�ne a Wiener proess with loal time η anda simple symmetri random walk on Z with loal time ξ suh that as n → ∞, for any ε > 0 we havealmost surely

sup
x∈Z

|ξ(x, n) − η(x, n)| = O(n1/4+ε).The proof of Theorem 5.1 is omplete. 2Theorems 1.2, 1.3 and 5.1 imply the following Corollary.Corollary 5.1 Let a(n) be a non-dereasing sequene of positive numbers. Then
P (sup

x∈Z

Ξ((x, 0), n) > n1/4a(n) i.o.) = 0 or 1aording as
∞
∑

n=1

a2(n)

n
exp

(

−3a4/3(n)

25/3

)

< ∞ or = ∞.Let b(n) be a non-inreasing sequene of positive numbers. Then
P (sup

x∈Z

Ξ((x, 0), n) < n1/4b(n) i.o.) = 0 or 1aording as
∞
∑

n=1

b2(n)

n
< ∞ or = ∞.Referenes[1℄ Bertahi, D. (2006). Asymptoti behaviour of the simple random walk on the 2-dimensionalomb. Eletron. J. Probab. 11 1184�1203.[2℄ Bertoin, J. (1996). Iterated Brownian motion and stable (1/4) subordinator.Statist. Probab.Lett. 27 111�114.[3℄ de Bruijn, N. G. (1981). Asymptoti Methods in Analysis, 3rd ed. Dover, New York.14
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