On the supremum of iterated local time

Endre Csáki ${ }^{1}$

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary. E-mail address: csaki@renyi.hu

Miklós Csörgõ ${ }^{2}$

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6. E-mail address: mcsorgo@math.carleton.ca

Antónia Földes ${ }^{3}$

Department of Mathematics, College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island, New York 10314, U.S.A. E-mail address: foldes@mail.csi.cuny.edu

Pál Révész ${ }^{1}$

Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstrasse 8-10/107 A-1040 Vienna, Austria. E-mail address: reveszp@renyi.hu

Abstract

We obtain upper and lower class integral tests for the space-wise supremum of the iterated local time of two independent Wiener processes. We then establish a strong invariance principle between this iterated local time and the local time process of the simple symmetric random walk on the two-dimensional comb lattice. The latter, in turn, enables us to conclude upper and lower class tests for the local time of simple symmetric random walk on the two-dimensional comb lattice as well.

MSC: primary 60J55, 60G50; secondary 60F15, 60F17
Keywords: Wiener process; Random walk; Local time; Strong approximation; Iterated local time

1 Introduction and main results

Let $\{W(t) ; t \geq 0\}$ be a standard Wiener process (Brownian motion), i.e., a Gaussian process with

$$
E(W(t))=0, \quad E\left(W\left(t_{1}\right) W\left(t_{2}\right)\right)=\min \left(t_{1}, t_{2}\right), \quad t, t_{1}, t_{2} \geq 0
$$

[^0]The local time process $\{\eta(x, t) ; x \in \mathbb{R}, t \geq 0\}$ is defined via

$$
\begin{equation*}
\int_{A} \eta(x, t) d x=\lambda\{s: 0 \leq s \leq t, W(s) \in A\} \tag{1.1}
\end{equation*}
$$

for any $t \geq 0$ and Borel set $A \subset \mathbb{R}$, where $\lambda(\cdot)$ is the Lebesgue measure, and $\eta(\cdot, \cdot)$ is frequently referred to as Wiener or Brownian local time.

Let $\eta_{1}(x, t)$ and $\eta_{2}(x, t)$ be two independent Brownian local times. The iterated local time is defined by

$$
\Upsilon(x, t):=\eta_{1}\left(x, \eta_{2}(0, t)\right) .
$$

Denote

$$
\begin{equation*}
\Upsilon^{*}(t):=\sup _{x \in \mathbb{R}} \Upsilon(x, t) . \tag{1.2}
\end{equation*}
$$

First we give asymptotic values for the upper and lower tails of the distribution of $\Upsilon^{*}(t)$.
Theorem 1.1 As $z \rightarrow \infty$

$$
\begin{equation*}
P\left(\Upsilon^{*}(t)>z t^{1 / 4}\right) \sim \frac{2^{11 / 3} z^{2 / 3}}{(3 \pi)^{1 / 2}} \exp \left(-\frac{3 z^{4 / 3}}{2^{5 / 3}}\right) \tag{1.3}
\end{equation*}
$$

and as $z \rightarrow 0$,

$$
\begin{equation*}
P\left(\Upsilon^{*}(t)<z t^{1 / 4}\right) \sim \frac{4 z^{2}}{(2 \pi)^{1 / 2}} \int_{0}^{\infty} \frac{G(s)}{s^{3}} d s \tag{1.4}
\end{equation*}
$$

for all $t>0$, where

$$
G(s):=P\left(\sup _{x \in \mathbb{R}} \eta(x, 1)<s\right) .
$$

Note that an explicit formula for $G(s)$ in terms of Bessel functions is given in Csáki and Földes [9].
The following integral tests are obtained.
Theorem 1.2 Let $f(t)>0$ be a non-decreasing function and put

$$
I(f):=\int_{1}^{\infty} \frac{f^{2}(t)}{t} \exp \left(-\frac{3}{2^{5 / 3}} f^{4 / 3}(t)\right) d t .
$$

Then

$$
P\left(\Upsilon^{*}(t)>t^{1 / 4} f(t) \text { i.o. as } t \rightarrow \infty\right)=0 \text { or } 1
$$

according as $I(f)$ converges or diverges.

Theorem 1.3 Let $g(t)>0$ be a non-increasing function and put

$$
J(g):=\int_{1}^{\infty} \frac{g^{2}(t)}{t} d t .
$$

Then

$$
P\left(\Upsilon^{*}(t)<t^{1 / 4} g(t) \text { i.o. as } t \rightarrow \infty\right)=0 \text { or } 1
$$

according as $J(g)$ converges or diverges.
In particular, we have the following law of the iterated logarithm:

$$
\limsup _{t \rightarrow \infty} \frac{\Upsilon^{*}(t)}{t^{1 / 4}(\log \log t)^{3 / 4}}=\frac{2^{5 / 4}}{3^{3 / 4}} \quad \text { a.s. }
$$

To compare the above results with similar integral tests for $\Upsilon(0, t)$, note that $\{\eta(0, t) ; t \geq$ $0\}$ has the same distribution as $\left\{\sup _{0 \leq s \leq t} W(s) ; t \geq 0\right\}$. Consequently $\{\Upsilon(0, t) ; t \geq 0\}$ has the same distribution as $\left\{\sup _{0 \leq s \leq t} W_{1}\left(\eta_{2}(0, s)\right) ; t \geq 0\right\}$, or, as easily seen, the same distribution as $\left\{\sup _{0 \leq s \leq t} W_{1}\left(W_{2}(s) \vee 0\right) ; t \geq 0\right\}$. From Bertoin [2] we obtain the following integral tests.

Theorem A Put

$$
\begin{gathered}
\hat{I}(f):=\int_{1}^{\infty} \frac{f^{2 / 3}(t)}{t} \exp \left(-\frac{3}{2^{5 / 3}} f^{4 / 3}(t)\right) d t \\
\hat{J}(g):=\int_{1}^{\infty} \frac{g(t)}{t} d t
\end{gathered}
$$

Then

$$
P\left(\Upsilon(0, t)>t^{1 / 4} f(t) \text { i.o. as } t \rightarrow \infty\right)=0 \text { or } 1
$$

according as $\hat{I}(f)$ converges or diverges. Moreover,

$$
P\left(\Upsilon(0, t)<t^{1 / 4} g(t) \text { i.o. as } t \rightarrow \infty\right)=0 \text { or } 1
$$

according as $\hat{J}(g)$ converges or diverges.
In particular, we have the same law of the iterated logarithm as for $\Upsilon^{*}(t)$:

$$
\limsup _{t \rightarrow \infty} \frac{\Upsilon(0, t)}{t^{1 / 4}(\log \log t)^{3 / 4}}=\frac{2^{5 / 4}}{3^{3 / 4}} \quad \text { a.s. }
$$

In the subsequent sections the proofs of Theorem 1.1, 1.2 and 1.3 will be given. In Section 5 we apply the results for the local time of the simple random walk on the 2 -dimensional comb.

In the proofs unimportant constants of possibly different positive values will be denoted by c, c_{0}, c_{1}, c_{2}.

2 Proof of Theorem 1.1

Since

$$
\frac{\Upsilon^{*}(t)}{t^{1 / 4}}=\frac{\eta_{1}^{*}\left(\eta_{2}(0, t)\right)}{\left(\eta_{2}(0, t)\right)^{1 / 2}} \sqrt{\frac{\eta_{2}(0, t)}{t^{1 / 2}}}
$$

it has the same distribution as $\eta_{1}^{*}(1) \sqrt{|N|}$, where $\eta_{1}^{*}(s)=\sup _{x \in \mathbb{R}} \eta_{1}(x, s)$ and N is a standard normal random variable independent of $\eta_{1}^{*}(1)$. Hence, denoting by φ the standard normal density,

$$
\begin{equation*}
P\left(\Upsilon^{*}(t)>z t^{1 / 4}\right)=2 \int_{0}^{\infty}\left(1-G\left(\frac{z}{\sqrt{u}}\right)\right) \varphi(u) d u . \tag{2.1}
\end{equation*}
$$

For the upper tail of G we have (see Csáki [5])

$$
\begin{equation*}
1-G(z) \sim 4 \sqrt{\frac{2}{\pi}} z \exp \left(-\frac{z^{2}}{2}\right), \quad z \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Now split the integral in (2.1) into three parts:

$$
\int_{0}^{\infty}=\int_{0}^{z^{2 / 3} / 2}+\int_{z^{2 / 3} / 2}^{2 z^{2 / 3}}+\int_{2 z^{2 / 3}}^{\infty}=I_{1}+I_{2}+I_{3}
$$

Using (2.2), it is easy to see that

$$
\begin{gathered}
I_{1} \leq c\left(1-G\left(2^{1 / 2} z^{2 / 3}\right)\right) \leq c z^{2 / 3} \exp \left(-z^{4 / 3}\right) \\
I_{3} \leq c \int_{2 z^{2 / 3}}^{\infty} \varphi(u) d u \leq c \exp \left(-2 z^{4 / 3}\right)
\end{gathered}
$$

so I_{1} and I_{3} are negligible compared to (1.3). For I_{2} we can use (2.2) and hence

$$
I_{2} \sim \frac{8}{\pi} \int_{z^{2 / 3} / 2}^{2 z^{2 / 3}} \frac{z}{\sqrt{u}} \exp \left(-\frac{z^{2}}{2 u}-\frac{u^{2}}{2}\right) d u=\frac{16 z^{4 / 3}}{\pi} \int_{1 / \sqrt{2}}^{\sqrt{2}} \exp \left(-\frac{z^{4 / 3}}{2}\left(\frac{1}{v^{2}}+v^{4}\right)\right) d v
$$

The asymptotic value of this integral can be obtained by Laplace's method (cf., e.g., de Bruijn [3])

$$
\int_{a}^{b} \exp (-\lambda h(v)) d v \sim \frac{\sqrt{2 \pi} e^{-\lambda h\left(v_{0}\right)}}{\sqrt{\lambda h^{\prime \prime}\left(v_{0}\right)}}, \quad \lambda \rightarrow \infty
$$

where v_{0} is the place of the minimum of h in (a, b), i.e., $h^{\prime}\left(v_{0}\right)=0$. Applying this, a straightforward calculation leads to (1.3).

To see (1.4), we have similarly

$$
P\left(\Upsilon^{*}(t)<z t^{1 / 4}\right)=2 \int_{0}^{\infty} G\left(\frac{z}{\sqrt{u}}\right) \varphi(u) d u=4 z^{2} \int_{0}^{\infty} \frac{G(s)}{s^{3}} \varphi\left(\frac{z^{2}}{s^{2}}\right) d s
$$

This integral is finite, since

$$
G(s) \sim c \exp \left(-\frac{2 j_{1}^{2}}{s^{2}}\right), \quad s \rightarrow 0,
$$

where j_{1} is the smallest positive zero of the Bessel function $J_{0}(\cdot)$ (cf. Csáki and Földes [9]).
Since $\varphi\left(z^{2} / s^{2}\right) \leq \varphi(0)$, we have

$$
P\left(\Upsilon^{*}(t)<x t^{1 / 4}\right) \sim 4 z^{2} \varphi(0) \int_{0}^{\infty} \frac{G(s)}{s^{3}} d s, \quad z \rightarrow 0
$$

by the dominated convergence theorem. This completes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

From Shi [13] we have the following result.
Lemma A Let f be a function as in Theorem 1.2. Put $T_{1}=1$,

$$
T_{k+1}=T_{k}\left(1+\frac{1}{f_{k}^{4 / 3}}\right), \quad k=1,2, \ldots
$$

where $f_{k}=f\left(T_{k}\right)$. Then $I(f)<\infty$ if and only if

$$
\sum_{k=1}^{\infty} f_{k}^{2 / 3} \exp \left(-\frac{3}{2^{5 / 3}} f_{k}^{4 / 3}\right)<\infty
$$

First we prove the convergence part of Theorem 1.2. Assume that $I(f)<\infty$ and define the events

$$
A_{k}=\left\{\Upsilon^{*}\left(T_{k+1}\right)>T_{k}^{1 / 4} f_{k}\right\}
$$

It follows from Theorem 1.1 that

$$
P\left(A_{k}\right) \leq c f_{k}^{2 / 3} \exp \left(-\frac{3}{2^{5 / 3}}\left(1+\frac{1}{f_{k}^{4 / 3}}\right)^{-1 / 3} f_{k}^{4 / 3}\right) .
$$

Using the inequality

$$
(1+u)^{-1 / 3} \geq 1-\frac{u}{3}, \quad 0 \leq u \leq 1,
$$

with $u=f_{k}^{-4 / 3}$, we obtain further

$$
P\left(A_{k}\right) \leq c f_{k}^{2 / 3} \exp \left(-\frac{3}{2^{5 / 3}} f_{k}^{4 / 3}\right)
$$

which is summable by Lemma A. Hence $P\left(A_{k}\right.$ i.o. $)=0$, i.e., for large k we have almost surely

$$
\Upsilon^{*}\left(T_{k+1}\right) \leq T_{k}^{1 / 4} f\left(T_{k}\right) .
$$

But for $T_{k} \leq t \leq T_{k+1}$, i.e., for large t

$$
\Upsilon^{*}(t) \leq \Upsilon\left(T_{k+1}\right) \leq T_{k}^{1 / 4} f\left(T_{k}\right) \leq t^{1 / 4} f(t),
$$

proving the convergence part.
For the divergence part, we follow the proof in [5]. Without loss of generality we may assume

$$
(\log \log t)^{3 / 4} \leq f(t) \leq(2 \log \log t)^{3 / 4}
$$

and, as easily seen,

$$
(\log k / 2)^{3 / 4} \leq f_{k} \leq(2 \log k)^{3 / 4}
$$

In the proof we also use the inequality

$$
\frac{T_{k}}{T_{\ell}} \leq\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k)}, \quad k<\ell
$$

Now assume that $I(f)=\infty$, and define the events

$$
B_{k}=\left\{T_{k}^{1 / 4} f_{k} \leq \Upsilon^{*}\left(T_{k}\right)<T_{k+1}^{1 / 4} f_{k}\right\}
$$

where $f_{k}=f\left(T_{k}\right)$. It follows from Theorem 1.1 that

$$
P\left(B_{k}\right) \geq c f_{k}^{2 / 3} \exp \left(-\frac{3 f_{k}^{4 / 3}}{2^{5 / 3}}\right)\left[1-\left(\frac{T_{k+1}}{T_{k}}\right)^{1 / 6} \exp \left(-\frac{3 f_{k}^{4 / 3}}{2^{5 / 3}}\left(\left(\frac{T_{k+1}}{T_{k}}\right)^{1 / 3}-1\right)\right)\right] .
$$

It is readily seen that $\lim _{k \rightarrow \infty} T_{k+1} / T_{k}=1$, and

$$
\lim _{k \rightarrow \infty} f_{k}^{4 / 3}\left(\left(\frac{T_{k+1}}{T_{k}}\right)^{1 / 3}-1\right)=\frac{1}{3}
$$

so there is a positive constant c such that

$$
P\left(B_{k}\right) \geq c f_{k}^{2 / 3} \exp \left(-\frac{3 f_{k}^{4 / 3}}{2^{5 / 3}}\right)
$$

and hence by Lemma A we have $\sum_{k} P\left(B_{k}\right)=\infty$.

Next we estimate $P\left(B_{k} B_{\ell}\right)$. Let $k<\ell$ and

$$
\Upsilon^{*}\left(T_{k}, T_{\ell}\right)=\sup _{x \in \mathbb{R}}\left(\eta_{1}\left(x, \eta_{2}\left(0, T_{\ell}\right)\right)-\eta_{1}\left(x, \eta_{2}\left(0, T_{k}\right)\right)\right) .
$$

Then, similarly to the proof in [5],

$$
\Upsilon^{*}\left(T_{k}, T_{\ell}\right) \leq \Upsilon^{*}\left(T_{\ell}\right) \leq \Upsilon^{*}\left(T_{k}\right)+\Upsilon^{*}\left(T_{k}, T_{\ell}\right)
$$

and

$$
\begin{gathered}
P\left(B_{k} B_{\ell}\right) \leq P\left(T_{k}^{1 / 4} f_{k} \leq \Upsilon^{*}\left(T_{k}\right)<T_{k+1}^{1 / 4} f_{k}, \Upsilon^{*}\left(T_{\ell}\right)-\Upsilon^{*}\left(T_{k}\right) \geq T_{\ell}^{1 / 4} f_{\ell}-T_{k+1}^{1 / 4} f_{k}\right) \\
\leq P\left(B_{k}\right) P\left(T_{\ell}^{1 / 4} f_{\ell}-T_{k+1}^{1 / 4} f_{k} \leq \Upsilon^{*}\left(T_{k}, T_{\ell}\right) \leq T_{\ell+1}^{1 / 4} f_{\ell}\right) .
\end{gathered}
$$

But $\Upsilon^{*}\left(T_{k}, T_{\ell}\right)$ has the same distribution as $\Upsilon^{*}\left(T_{\ell}-T_{k}\right)$, or $\left(T_{\ell}-T_{k}\right)^{1 / 4} \Upsilon^{*}(1)$, hence

$$
\begin{gather*}
P\left(B_{k} B_{\ell}\right) \leq P\left(B_{k}\right) P\left(\Upsilon^{*}(1) \geq \frac{f_{\ell} T_{\ell}^{1 / 4}-f_{k} T_{k+1}^{1 / 4}}{\left(T_{\ell}-T_{k}\right)^{1 / 4}}\right) \\
\leq P\left(B_{k}\right) P\left(\Upsilon^{*}(1) \geq f_{\ell} \frac{T_{\ell}^{1 / 4}-T_{k+1}^{1 / 4}}{\left(T_{\ell}-T_{k}\right)^{1 / 4}}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} H_{k, \ell}^{2 / 3} \exp \left(-\frac{3 f_{\ell}^{4 / 3} H_{k, \ell}^{4 / 3}}{2^{5 / 3}}\right), \tag{3.1}
\end{gather*}
$$

where

$$
H_{k, \ell}=\frac{T_{\ell}^{1 / 4}-T_{k+1}^{1 / 4}}{\left(T_{\ell}-T_{k}\right)^{1 / 4}}
$$

Using the inequality

$$
\frac{(1-u)^{3 / 4}}{4} \leq \frac{1-u^{1 / 4}}{(1-u)^{1 / 4}} \leq 1, \quad 0<u<1,
$$

we get

$$
\frac{1}{4}\left(1-\frac{T_{k}}{T_{\ell}}\right)^{3 / 4} \frac{T_{\ell}^{1 / 4}-T_{k+1}^{1 / 4}}{T_{\ell}^{1 / 4}-T_{k}^{1 / 4}} \leq H_{k, \ell} \leq 1
$$

For $k+2 \leq \ell$ we have, by straightforward calculation,

$$
\frac{T_{\ell}^{1 / 4}-T_{k+1}^{1 / 4}}{T_{\ell}^{1 / 4}-T_{k}^{1 / 4}} \geq \frac{T_{k+2}^{1 / 4}-T_{k+1}^{1 / 4}}{T_{k+2}^{1 / 4}-T_{k}^{1 / 4}} \sim \frac{1}{1+\left(\frac{f_{k+1}}{f_{k}}\right)^{4 / 3}}
$$

from which

$$
c\left(1-\frac{T_{k}}{T_{\ell}}\right)^{3 / 4} \leq H_{k, \ell} \leq 1
$$

with certain constant $c>0$. Consequently,

$$
P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} \exp \left(-c_{1} f_{\ell}^{4 / 3}\left(1-\frac{T_{k}}{T_{\ell}}\right)\right) .
$$

Now, for fixed k, let

$$
\begin{gathered}
L_{1}=\left\{\ell: k+2 \leq \ell \leq k+f_{\ell}^{4 / 3}\right\}, \\
L_{2}=\left\{\ell: k+f_{\ell}^{4 / 3}<\ell \leq k+4 f_{\ell}^{4 / 3} \log f_{\ell}^{4 / 3}\right\}, \\
L_{3}=\left\{\ell: k+4 f_{\ell}^{4 / 3} \log f_{\ell}^{4 / 3}<\ell\right\} .
\end{gathered}
$$

If $\ell \in L_{1}$, then

$$
1-\frac{T_{k}}{T_{\ell}} \geq 1-\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k)} \geq \frac{\ell-k}{2 f_{\ell}^{4 / 3}}
$$

i.e.,

$$
P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} e^{-c_{2}(\ell-k)},
$$

consequently

$$
\begin{equation*}
\sum_{\ell \in L_{1}} P\left(B_{k} B_{\ell}\right) \leq K P\left(B_{k}\right) . \tag{3.2}
\end{equation*}
$$

If $\ell \in L_{2}$, then

$$
1-\frac{T_{k}}{T_{\ell}} \geq 1-\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k)} \geq c
$$

with some $c>0$. We have

$$
P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} e^{-c_{0} f_{\ell}^{4 / 3}} \leq c P\left(B_{k}\right)(\log \ell)^{1 / 2} \ell^{-c_{0} / 2} \leq c P\left(B_{k}\right)(\log k)^{1 / 2} k^{-c_{0} / 2} .
$$

But

$$
\ell-k \leq 4 f_{\ell}^{4 / 3} \log f_{\ell}^{4 / 3} \leq \frac{\ell}{2},
$$

i.e., $\ell \leq 2 k$, hence

$$
\ell-k \leq 4 f_{2 k}^{4 / 3} \log f_{2 k}^{4 / 3} .
$$

Consequently,

$$
\begin{equation*}
\sum_{\ell \in L_{2}} P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right)(\log k)^{1 / 2} k^{-c_{0} / 2} f_{2 k}^{4 / 3} \log f_{2 k}^{4 / 3} \leq c P\left(B_{k}\right) . \tag{3.3}
\end{equation*}
$$

If $\ell \in L_{3}$, then

$$
\frac{T_{\ell}^{1 / 4}-T_{k+1}^{1 / 4}}{\left(T_{\ell}-T_{k}\right)^{1 / 4}} \geq 1-\left(\frac{T_{k+1}}{T_{\ell}}\right)^{1 / 4} \geq 1-\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k-1) / 4}
$$

Hence, using (3.1),

$$
P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} \exp \left(-\frac{3 f_{\ell}^{4 / 3}}{2^{5 / 3}}\left(1-\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k-1) / 4}\right)^{4 / 3}\right)
$$

It can be seen that

$$
\begin{gathered}
\frac{3 f_{\ell}^{4 / 3}}{2^{5 / 3}}\left(\left(1-\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k-1) / 4}\right)^{4 / 3}-1\right) \\
\sim-2^{1 / 3} f_{\ell}^{4 / 3}\left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)^{-(\ell-k-1) / 4} \\
=-2^{1 / 3} f_{\ell}^{4 / 3} \exp \left(-\frac{\ell-k-1}{4} \log \left(1+\frac{1}{f_{\ell}^{4 / 3}}\right)\right) \\
\sim-2^{1 / 3} f_{\ell}^{4 / 3} \exp \left(-\frac{\ell-k-1}{4 f_{\ell}^{4 / 3}}\right) \geq-2^{1 / 3} f_{\ell}^{4 / 3} \exp \left(-\log f_{\ell}^{4 / 3}\right) \geq-2^{1 / 3} .
\end{gathered}
$$

It follows that

$$
\begin{equation*}
P\left(B_{k} B_{\ell}\right) \leq c P\left(B_{k}\right) f_{\ell}^{2 / 3} \exp \left(-\frac{3 f_{\ell}^{4 / 3}}{2^{5 / 3}}\right) \leq c P\left(B_{k}\right) P\left(B_{\ell}\right) \tag{3.4}
\end{equation*}
$$

On using (3.2), (3.3), (3.4) together with $P\left(B_{k} B_{\ell}\right) \leq P\left(B_{k}\right)$ for $\ell=k, k+1$, we obtain

$$
\liminf _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sum_{\ell=1}^{n} P\left(B_{k} B_{\ell}\right)}{\left(\sum_{k=1}^{n} P\left(B_{k}\right)\right)^{2}}>0
$$

hence from Borel-Cantelli lemma and 0-1 law we obtain $P\left(B_{k}\right.$ i.o. $)=1$, completing the proof of Theorem 1.2.

4 Proof of Theorem 1.3

First assume that $J(g)<\infty$. Let $t_{k}=e^{k}$ and define the events

$$
B_{k}=\left\{\Upsilon^{*}\left(t_{k}\right)<t_{k+1}^{1 / 4} g\left(t_{k+1}\right)\right\}
$$

Then

$$
P\left(B_{k}\right) \leq c g^{2}\left(t_{k+1}\right)
$$

which is well-known to be summable if $J(g)<\infty$. Hence for large k we have almost surely

$$
\Upsilon^{*}\left(t_{k}\right) \geq t_{k+1}^{1 / 4} g\left(t_{k+1}\right)
$$

and for $t_{k} \leq t<t_{k+1}$

$$
\Upsilon^{*}(t) \geq \Upsilon^{*}\left(t_{k}\right) \geq t_{k+1}^{1 / 4} g\left(t_{k+1}\right) \geq t^{1 / 4} g(t)
$$

proving the convergence part.
Now assume that $J(g)=\infty$. Put $t_{k}=2^{k}$ and define the events

$$
\begin{gathered}
A_{k}=\left\{\eta_{2}\left(0, t_{k}\right) \leq t_{k}^{1 / 2} g^{2}\left(t_{k}\right)\right\} \\
B_{k}=\left\{\eta_{1}^{*}\left(t_{k}^{1 / 2} g^{2}\left(t_{k}\right)\right) \leq t_{k}^{1 / 4} g\left(t_{k}\right)\right\}
\end{gathered}
$$

Then $P\left(A_{k}\right.$ i.o. $)=1$ (cf. Csáki [4], the proof of the divergent part of Theorem 2.1 (i) on p. 211) and, by scaling property, $P\left(B_{k}\right)=p>0$, independently of k. It follows from Lemma 3.1 of Csáki et al. [7] that $P\left(A_{k} B_{k}\right.$ i.o. $) \geq p$. Consequently, $P\left(\Upsilon^{*}\left(t_{k}\right) \leq t_{k}^{1 / 4} g\left(t_{k}\right)\right.$ i.o. $) \geq p>0$. Now the proof of the divergence part is complete by $0-1$ law.

5 Simple random walk on 2-dimensional comb

We consider a simple random walk $\mathbf{C}(n)$ on the 2-dimensional comb lattice \mathbb{C}^{2} that is obtained from \mathbb{Z}^{2} by removing all horizontal lines off the x-axis.

A formal way of describing a simple random walk $\mathbf{C}(n)$ on the above 2-dimensional comb lattice \mathbb{C}^{2} can be formulated via its transition probabilities as follows: for $(x, y) \in \mathbb{Z}^{2}$

$$
\begin{gather*}
P(\mathbf{C}(n+1)=(x, y \pm 1) \mid \mathbf{C}(n)=(x, y))=\frac{1}{2}, \quad \text { if } y \neq 0, \tag{5.1}\\
P(\mathbf{C}(n+1)=(x \pm 1,0) \mid \mathbf{C}(n)=(x, 0))=P(\mathbf{C}(n+1)=(x, \pm 1) \mid \mathbf{C}(n)=(x, 0))=\frac{1}{4} \tag{5.2}
\end{gather*}
$$

Unless otherwise stated, we assume that $\mathbf{C}(0)=\mathbf{0}=(0,0)$. The coordinates of the just defined vector valued simple random walk $\mathbf{C}(n)$ on \mathbb{C}^{2} will be denoted by $C_{1}(n), C_{2}(n)$, i.e., $\mathbf{C}(n):=$ $\left(C_{1}(n), C_{2}(n)\right)$.

For a recent review of some related literature concerning this simple random walk we refer to Bertacchi [1] and Csáki et al. [8]. In the latter paper we established a strong approximation for the random walk $\mathbf{C}(n)=\left(C_{1}(n), C_{2}(n)\right)$ that reads as follows.

Theorem B On an appropriate probability space for the random walk $\left\{\mathbf{C}(n)=\left(C_{1}(n), C_{2}(n)\right)\right.$; $n=0,1,2, \ldots\}$ on \mathbb{C}^{2}, one can construct two independent standard Wiener processes $\left\{W_{1}(t) ; t \geq 0\right\}$, $\left\{W_{2}(t) ; t \geq 0\right\}$ so that, as $n \rightarrow \infty$, we have with any $\varepsilon>0$

$$
n^{-1 / 4}\left|C_{1}(n)-W_{1}\left(\eta_{2}(0, n)\right)\right|+n^{-1 / 2}\left|C_{2}(n)-W_{2}(n)\right|=O\left(n^{-1 / 8+\varepsilon}\right) \quad \text { a.s. },
$$

where $\eta_{2}(0, \cdot)$ is the local time process at zero of $W_{2}(\cdot)$.
Define now the local time process $\Xi(\cdot, \cdot)$ of the random walk $\{\mathbf{C}(n) ; n=0,1, \ldots\}$ on the 2 dimensional comb lattice \mathbb{C}^{2} by

$$
\begin{equation*}
\Xi(\mathbf{x}, n):=\#\{0<k \leq n: \mathbf{C}(k)=\mathbf{x}\}, \quad \mathbf{x} \in \mathbb{C}^{2}, n=1,2, \ldots \tag{5.3}
\end{equation*}
$$

We now introduce our next result that concludes a strong approximation of the just introduced local time process $\Xi((x, 0), n)$.

Theorem 5.1 On a suitable probability space we can define a simple random walk on \mathbb{C}^{2} and two independent Wiener local times $\eta_{1}(\cdot, \cdot), \eta_{2}(\cdot, \cdot)$ such that as $n \rightarrow \infty$, we have for any $\varepsilon>0$

$$
\begin{equation*}
\sup _{x \in \mathbb{Z}}\left|\Xi((x, 0), n)-2 \eta_{1}\left(x, \eta_{2}(0, n)\right)\right|=O\left(n^{1 / 8+\varepsilon}\right) \quad \text { a.s. } \tag{5.4}
\end{equation*}
$$

Proof. As in [8], start with two independent simple symmetric random walks on the line

$$
\left\{S_{1}(n), S_{2}(n) ; n=0,1, \ldots\right\}
$$

with respective local times

$$
\xi_{i}(x, n):=\#\left\{j: 1 \leq j \leq n, S_{i}(j)=x\right\}, \quad i=1,2, \quad x \in \mathbb{Z}, \quad n=1,2, \ldots
$$

and inverse local times

$$
\rho_{i}(N):=\min \left\{j>\rho_{N-1}: S_{i}(j)=0\right\}, \quad i=1,2, \quad N=1,2, \ldots
$$

with $\rho_{i}(0)=0$. Assume that on the same probability space we have an i.i.d. sequence of random variables G_{1}, G_{2}, \ldots with geometric distribution,

$$
P\left(G_{1}=k\right)=\frac{1}{2^{k+1}}, \quad k=0,1,2, \ldots
$$

that is independent of $S_{1}(\cdot), S_{2}(\cdot)$. We may construct a simple random walk on the 2-dimensional comb lattice \mathbb{C}^{2} as follows. Put $T_{N}=G_{1}+G_{2}+\ldots G_{N}, N=1,2, \ldots$ For $n=0, \ldots, T_{1}$, let $C_{1}(n)=$
$S_{1}(n)$ and $C_{2}(n)=0$. For $n=T_{1}+1, \ldots, T_{1}+\rho_{2}(1)$, let $C_{1}(n)=C_{1}\left(T_{1}\right), C_{2}(n)=S_{2}\left(n-T_{1}\right)$. In general, for $T_{N}+\rho_{2}(N)<n \leq T_{N+1}+\rho_{2}(N)$, let

$$
\begin{gathered}
C_{1}(n)=S_{1}\left(n-\rho_{2}(N)\right) \\
C_{2}(n)=0
\end{gathered}
$$

and, for $T_{N+1}+\rho_{2}(N)<n \leq T_{N+1}+\rho_{2}(N+1)$, let

$$
\begin{aligned}
C_{1}(n)= & C_{1}\left(T_{N+1}+\rho_{2}(N)\right)=S_{1}\left(T_{N+1}\right) \\
& C_{2}(n)=S_{2}\left(n-T_{N+1}\right)
\end{aligned}
$$

Then it can be seen that, in terms of these definitions for $C_{1}(n)$ and $C_{2}(n), \mathbf{C}(n)=\left(C_{1}(n), C_{2}(n)\right)$ is a simple random walk on the 2-dimensional comb lattice \mathbb{C}^{2}.

First we approximate the local time $\Xi((x, 0), n)$ by iterated simple symmetric random walk local time.

Proposition 5.1 On a suitable probability space we can define a simple random walk \mathbf{C} on \mathbb{C}^{2} with local time Ξ and two simple random walks S_{1}, S_{2} on \mathbb{Z} with local times ξ_{1}, ξ_{2} such that as $n \rightarrow \infty$, we have for any $\varepsilon>0$

$$
\begin{equation*}
\sup _{x \in \mathbb{Z}}\left|\Xi((x, 0), n)-2 \xi_{1}\left(x, \xi_{2}(0, n)\right)\right|=O\left(n^{1 / 8+\varepsilon}\right) \quad \text { a.s. } \tag{5.5}
\end{equation*}
$$

Proof. Introduce the following notations. For the random walk $\mathbf{C}(\cdot)$ let $H(n)$ be the horizontal steps on the x-axis up to time n and let $V(n)$ be the number of vertical steps up to time n. Moreover, let $B(n)$ be the number of vertical visits to the x-axis up to time n. Put

$$
\Xi^{(h)}((x, 0), n):=\#\left\{0<k \leq n: \mathbf{C}(k)=(x, 0),\left|C_{1}(k)-C_{1}(k-1)\right|>0, C_{2}(k-1)=0\right\}
$$

and

$$
\Xi^{(v)}((x, 0), n)=\Xi((x, 0), n)-\Xi^{(h)}((x, 0), n)
$$

i.e., the horizontal, resp. vertical, visits to the point $(x, 0)$ up to time n. Then, we have clearly

$$
\begin{gathered}
\Xi^{(h)}((x, 0), n)=\xi_{1}(x, H(n)) \\
B(n)=\xi_{2}(0, V(n))=\xi_{2}(0, n-H(n))=O\left(n^{1 / 2+\varepsilon}\right) \quad \text { a.s., } \\
H(n)=G_{1}+G_{2}+\ldots+G_{B(n)}=O(B(n))=O\left(n^{1 / 2+\varepsilon}\right) \quad \text { a.s., } \\
|H(n)-B(n)|=\left|G_{1}+G_{2}+\ldots+G_{B(n)}-B(n)\right|=O\left((B(n))^{1 / 2+\varepsilon}\right)=O\left(n^{1 / 4+\varepsilon}\right) \quad \text { a.s., }
\end{gathered}
$$

as $n \rightarrow \infty$. Using the increment property of simple symmetric random walk local time (cf. Révész [12], Theorem 11.15), we get

$$
\xi_{2}(0, n)-\xi_{2}(0, n-H(n))=O\left((H(n))^{1 / 2+\varepsilon}\right) \quad \text { a.s. }, \quad n \rightarrow \infty
$$

and

$$
\begin{gathered}
\Xi^{(h)}((x, 0), n)=\xi_{1}(x, H(n))=\xi_{1}\left(x, B(n)+O\left(B(n)^{1 / 2+\varepsilon}\right)\right)=\xi_{1}(x, B(n))+O\left(B(n)^{1 / 4+\varepsilon}\right) \\
=\xi_{1}\left(x, \xi_{2}(0, n-H(n))\right)+O\left(\xi_{2}(0, n-H(n))^{1 / 4+\varepsilon}\right. \\
=\xi_{1}\left(x, \xi_{2}(0, n)\right)+O\left((H(n))^{1 / 4+\varepsilon}\right)=\xi_{1}\left(x, \xi_{2}(0, n)\right)+O\left(n^{1 / 8+\varepsilon}\right)
\end{gathered}
$$

almost surely, where we used that $H(n)=O\left(n^{1 / 2+\varepsilon}\right)$ a.s., $n \rightarrow \infty$.
Now we show that $\Xi^{(h)}$ and $\Xi^{(v)}$ are close to each other.
Lemma 5.1 As $n \rightarrow \infty$, we have almost surely

$$
\begin{equation*}
\sup _{x \in \mathbb{Z}}\left|\Xi^{(h)}((x, 0), n)-\Xi^{(v)}((x, 0), n)\right|=O\left(n^{1 / 8+\varepsilon}\right) . \tag{5.6}
\end{equation*}
$$

Proof. By the law of the iterated logarithm we have $C_{1}(n)=O\left(n^{1 / 4+\varepsilon}\right)$ almost surely, as $n \rightarrow \infty$, and hence it suffices to show

$$
\begin{equation*}
\sup _{|x| \leq n^{1 / 4+\varepsilon}}\left|\Xi^{(h)}((x, 0), n)-\Xi^{(v)}((x, 0), n)\right|=O\left(n^{1 / 8+\varepsilon}\right) \quad \text { a.s. } \tag{5.7}
\end{equation*}
$$

as $n \rightarrow \infty$.
Let $\kappa(x, 0)$ be the time of the first horizontal visit of $\mathbf{C}(\cdot)$ to $(x, 0)$, and for $\ell \geq 1$ let $\kappa(x, \ell)$ denote the time of the ℓ-th horizontal return of $\mathbf{C}(\cdot)$ to $(x, 0)$. Then

$$
\Xi^{(v)}((x, 0), \kappa(x, \ell))=\sum_{j=1}^{\ell}\left(\Xi^{(v)}((x, 0), \kappa(x, j))-\Xi^{(v)}((x, 0), \kappa(x, j-1))\right)
$$

which is a sum of i.i.d. random variables with geometric distribution

$$
P\left(\Xi^{(v)}((x, 0), \kappa(x, j))-\Xi^{(v)}((x, 0), \kappa(x, j-1))=i\right)=\frac{1}{2^{i+1}}, \quad i=0,1,2, \ldots
$$

By exponential Kolmogorov inequality (see Tóth [14])

$$
P\left(\max _{\ell \leq m} \left\lvert\, \Xi^{(v)}((x, 0), \kappa(x, \ell)-\ell \mid>u) \leq 2 \exp \left(-\frac{u^{2}}{8 m}\right)\right.\right.
$$

Hence, we have also

$$
P\left(\max _{|x| \leq m} \max _{\ell \leq m} \left\lvert\, \Xi^{(v)}((x, 0), \kappa(x, \ell)-\ell \mid>u) \leq 2 m \exp \left(-\frac{u^{2}}{8 m}\right)\right.\right.
$$

Putting $u=m^{1 / 2+\varepsilon}$, Borel-Cantelli lemma implies

$$
\max _{|x| \leq m} \max _{\ell \leq m}\left|\Xi^{(v)}((x, 0), \kappa(x, \ell))-\ell\right|=O\left(m^{1 / 2+\varepsilon}\right) \quad \text { a.s. }
$$

as $m \rightarrow \infty$.
Since

$$
\Xi^{(h)}((x, 0), n)=O\left(n^{1 / 4+\varepsilon}\right) \quad \text { a.s., } \quad n \rightarrow \infty,
$$

with $m=n^{1 / 4+\varepsilon}$, we have the Lemma.
This also completes the proof of the Proposition.
Now Theorem 5.1 follows from strong invariance principle for local time (cf. Révész [11]) quoted as Theorem C below, and increment results for Wiener local time (cf. Révész [12], Theorem 11.11).
Theorem C On a suitable probability space one can define a Wiener process with local time η and a simple symmetric random walk on \mathbb{Z} with local time ξ such that as $n \rightarrow \infty$, for any $\varepsilon>0$ we have almost surely

$$
\sup _{x \in \mathbb{Z}}|\xi(x, n)-\eta(x, n)|=O\left(n^{1 / 4+\varepsilon}\right) .
$$

The proof of Theorem 5.1 is complete.
Theorems 1.2, 1.3 and 5.1 imply the following Corollary.
Corollary 5.1 Let $a(n)$ be a non-decreasing sequence of positive numbers. Then

$$
P\left(\sup _{x \in \mathbb{Z}} \Xi((x, 0), n)>n^{1 / 4} a(n) \text { i.o. }\right)=0 \text { or } 1
$$

according as

$$
\sum_{n=1}^{\infty} \frac{a^{2}(n)}{n} \exp \left(-\frac{3 a^{4 / 3}(n)}{2^{5 / 3}}\right)<\infty \text { or }=\infty .
$$

Let $b(n)$ be a non-increasing sequence of positive numbers. Then

$$
P\left(\sup _{x \in \mathbb{Z}} \Xi((x, 0), n)<n^{1 / 4} b(n) \text { i.o. }\right)=0 \text { or } 1
$$

according as

$$
\sum_{n=1}^{\infty} \frac{b^{2}(n)}{n}<\infty \text { or }=\infty .
$$

References

[1] Bertacchi, D. (2006). Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11 1184-1203.
[2] Bertoin, J. (1996). Iterated Brownian motion and stable (1/4) subordinator.Statist. Probab. Lett. 27 111-114.
[3] De Bruijn, N. G. (1981). Asymptotic Methods in Analysis, 3rd ed. Dover, New York.
[4] Csáki, E. (1978). On the lower limits of maxima and minima of Wiener process and partial sums. Z. Wahrsch. verw. Gebiete 43 205-221.
[5] Csáki, E. (1989). An integral test for the supremum of Wiener local time. Probab. Theory Related Fields 83 207-217.
[6] Csáki, E., Csörgõ, M., Földes, A. and Révész, P. (1992). Strong approximation of additive functionals. J. Theoret. Probab. 5679-706.
[7] Csáki, E., Csörgô, M., Földes, A. and Révész, P. (1997), On the occupation time of an iterated process having no local time. Stochastic Process. Appl. 70 199-217.
[8] Csáki, E., Csörgô, M., Földes, A. and Révész, P. (2009). Strong limit theorems for a simple random walk on the 2-dimensional comb. Submitted. arXiv:math.PR/0902.4369
[9] Csáki, E. and Földes, A. (1986). How small are the increments of the local time of a Wiener process? Ann. Probab. 14 533-546.
[10] Hirsch, W.M. (1965). A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 109-127.
[11] Révész, P. (1981). Local time and invariance. In: Analytical Methods in Probability Theory. Lecture Notes in Math. 861 128-145. Springer, New York.
[12] Révész, P. (2005). Random Walk in Random and Non-Random Environments, 2nd ed. World Scientific, Singapore.
[13] Shi, Z. (1995). Lower limits of iterated Wiener processes. Statist. Probab. Lett. 23 259-270.
[14] Tóth, B. (2001). No more than three favorite sites for simple random walk. Ann. Probab. 29 484-503.

[^0]: ${ }^{1}$ Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K 61052 and K 67961.
 ${ }^{2}$ Research supported by an NSERC Canada Discovery Grant at Carleton University
 ${ }^{3}$ Research supported by a PSC CUNY Grant, No. 68030-0037.

